Definite Integral as Limit of a Sum
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Integral Calculus

86414 The integral \(\int_{0}^{\pi} \frac{x}{2 \operatorname{cosec} x-\sin x} d x\) is equal to

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi^{2}}{2}\)
4 \(\frac{\pi^{2}}{4}\)
Integral Calculus

86425 \(\int_{0}^{1} x(1-x)^{12} d x\) is equal to

1 \(\frac{1}{132}\)
2 \(\frac{1}{156}\)
3 \(\frac{1}{182}\)
4 None of the above
Integral Calculus

86427 If \(a\lt 0\lt b\), then \(\int_{a}^{b} \frac{|x|}{x} d x\)

1 \(a-b\)
2 \(b-a\)
3 \(a+b\)
4 \(-a-b\)
Integral Calculus

86378 \(\int \frac{\mathrm{e}^{\mathrm{x}^{2}}\left(2 \mathrm{x}+\mathrm{x}^{3}\right)}{\left(3+\mathrm{x}^{2}\right)^{2}} \mathrm{dx}\) is equal to :

1 \(\frac{\mathrm{e}^{\mathrm{x}^{2}}}{\left(3+\mathrm{x}^{2}\right)}+\mathrm{k}\)
2 \(\frac{1}{2} \frac{\mathrm{e}^{\mathrm{x}^{2}}}{\left(3+\mathrm{x}^{2}\right)^{2}}+\mathrm{k}\)
3 \(\frac{1}{4} \frac{\mathrm{e}^{\mathrm{x}^{2}}}{\left(3+\mathrm{x}^{2}\right)^{2}}+\mathrm{k}\)
4 \(\frac{1}{2} \frac{\mathrm{e}^{\mathrm{x}^{2}}}{\left(3+\mathrm{x}^{2}\right)}+\mathrm{k}\)
Integral Calculus

86414 The integral \(\int_{0}^{\pi} \frac{x}{2 \operatorname{cosec} x-\sin x} d x\) is equal to

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi^{2}}{2}\)
4 \(\frac{\pi^{2}}{4}\)
Integral Calculus

86425 \(\int_{0}^{1} x(1-x)^{12} d x\) is equal to

1 \(\frac{1}{132}\)
2 \(\frac{1}{156}\)
3 \(\frac{1}{182}\)
4 None of the above
Integral Calculus

86427 If \(a\lt 0\lt b\), then \(\int_{a}^{b} \frac{|x|}{x} d x\)

1 \(a-b\)
2 \(b-a\)
3 \(a+b\)
4 \(-a-b\)
Integral Calculus

86378 \(\int \frac{\mathrm{e}^{\mathrm{x}^{2}}\left(2 \mathrm{x}+\mathrm{x}^{3}\right)}{\left(3+\mathrm{x}^{2}\right)^{2}} \mathrm{dx}\) is equal to :

1 \(\frac{\mathrm{e}^{\mathrm{x}^{2}}}{\left(3+\mathrm{x}^{2}\right)}+\mathrm{k}\)
2 \(\frac{1}{2} \frac{\mathrm{e}^{\mathrm{x}^{2}}}{\left(3+\mathrm{x}^{2}\right)^{2}}+\mathrm{k}\)
3 \(\frac{1}{4} \frac{\mathrm{e}^{\mathrm{x}^{2}}}{\left(3+\mathrm{x}^{2}\right)^{2}}+\mathrm{k}\)
4 \(\frac{1}{2} \frac{\mathrm{e}^{\mathrm{x}^{2}}}{\left(3+\mathrm{x}^{2}\right)}+\mathrm{k}\)
Integral Calculus

86414 The integral \(\int_{0}^{\pi} \frac{x}{2 \operatorname{cosec} x-\sin x} d x\) is equal to

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi^{2}}{2}\)
4 \(\frac{\pi^{2}}{4}\)
Integral Calculus

86425 \(\int_{0}^{1} x(1-x)^{12} d x\) is equal to

1 \(\frac{1}{132}\)
2 \(\frac{1}{156}\)
3 \(\frac{1}{182}\)
4 None of the above
Integral Calculus

86427 If \(a\lt 0\lt b\), then \(\int_{a}^{b} \frac{|x|}{x} d x\)

1 \(a-b\)
2 \(b-a\)
3 \(a+b\)
4 \(-a-b\)
Integral Calculus

86378 \(\int \frac{\mathrm{e}^{\mathrm{x}^{2}}\left(2 \mathrm{x}+\mathrm{x}^{3}\right)}{\left(3+\mathrm{x}^{2}\right)^{2}} \mathrm{dx}\) is equal to :

1 \(\frac{\mathrm{e}^{\mathrm{x}^{2}}}{\left(3+\mathrm{x}^{2}\right)}+\mathrm{k}\)
2 \(\frac{1}{2} \frac{\mathrm{e}^{\mathrm{x}^{2}}}{\left(3+\mathrm{x}^{2}\right)^{2}}+\mathrm{k}\)
3 \(\frac{1}{4} \frac{\mathrm{e}^{\mathrm{x}^{2}}}{\left(3+\mathrm{x}^{2}\right)^{2}}+\mathrm{k}\)
4 \(\frac{1}{2} \frac{\mathrm{e}^{\mathrm{x}^{2}}}{\left(3+\mathrm{x}^{2}\right)}+\mathrm{k}\)
Integral Calculus

86414 The integral \(\int_{0}^{\pi} \frac{x}{2 \operatorname{cosec} x-\sin x} d x\) is equal to

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{\pi^{2}}{2}\)
4 \(\frac{\pi^{2}}{4}\)
Integral Calculus

86425 \(\int_{0}^{1} x(1-x)^{12} d x\) is equal to

1 \(\frac{1}{132}\)
2 \(\frac{1}{156}\)
3 \(\frac{1}{182}\)
4 None of the above
Integral Calculus

86427 If \(a\lt 0\lt b\), then \(\int_{a}^{b} \frac{|x|}{x} d x\)

1 \(a-b\)
2 \(b-a\)
3 \(a+b\)
4 \(-a-b\)
Integral Calculus

86378 \(\int \frac{\mathrm{e}^{\mathrm{x}^{2}}\left(2 \mathrm{x}+\mathrm{x}^{3}\right)}{\left(3+\mathrm{x}^{2}\right)^{2}} \mathrm{dx}\) is equal to :

1 \(\frac{\mathrm{e}^{\mathrm{x}^{2}}}{\left(3+\mathrm{x}^{2}\right)}+\mathrm{k}\)
2 \(\frac{1}{2} \frac{\mathrm{e}^{\mathrm{x}^{2}}}{\left(3+\mathrm{x}^{2}\right)^{2}}+\mathrm{k}\)
3 \(\frac{1}{4} \frac{\mathrm{e}^{\mathrm{x}^{2}}}{\left(3+\mathrm{x}^{2}\right)^{2}}+\mathrm{k}\)
4 \(\frac{1}{2} \frac{\mathrm{e}^{\mathrm{x}^{2}}}{\left(3+\mathrm{x}^{2}\right)}+\mathrm{k}\)