Definite Integral as Limit of a Sum
Integral Calculus

86429 \(\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\mathrm{n}} \theta}{\sin ^{\mathrm{n}} \theta+\cos ^{\mathrm{n}} \theta} d \theta\) is equal to

1 1
2 \(\frac{\pi}{2}\)
3 0
4 \(\frac{\pi}{4}\)
Integral Calculus

86430 \(\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x\)

1 \(\frac{\pi}{2}\)
2 0
3 \(\frac{\pi}{4}\)
4 \(\pi\)
Integral Calculus

86365 For the curve \(4 x^{5}=5 y^{4}\), the ratio of the cube of the subtangent at a point on the curve to the square of the subnormal at the same point \(i\)

1 \(y\left(\frac{5}{4}\right)^{4}\)
2 \(\left(\frac{5}{4}\right)^{4}\)
3 \(\left(\frac{5}{4}\right)^{3}\)
4 \(\left(\frac{4}{5}\right)^{4}\)
Integral Calculus

86366 The value of \(\int e^{\sin x} \sin 2 x d x\) is

1 \(2 \mathrm{e}^{\sin \mathrm{x}}(\sin \mathrm{x}+1)+\mathrm{C}\)
2 \(2 \mathrm{e}^{\sin x}(\cos \mathrm{x}+1)+\mathrm{C}\)
3 \(2 \mathrm{e}^{\sin x}(\cos \mathrm{x}-1)+\mathrm{C}\)
4 \(2 \mathrm{e}^{\sin x}(\sin \mathrm{x}-1)+C\)
Integral Calculus

86431 \(\int_{0}^{1} \frac{d x}{(3 x+2)+\sqrt{3 x+2}}=\)

1 \(-\frac{2}{3} \log \left|\frac{\sqrt{5+1}}{\sqrt{2}+1}\right|\)
2 \(\frac{2}{3} \log \left|\frac{\sqrt{5+1}}{\sqrt{2}+1}\right|\)
3 \(2 \log |\sqrt{5+1}|\)
4 \(\frac{2}{3} \log |\sqrt{5+1}|\)
Integral Calculus

86429 \(\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\mathrm{n}} \theta}{\sin ^{\mathrm{n}} \theta+\cos ^{\mathrm{n}} \theta} d \theta\) is equal to

1 1
2 \(\frac{\pi}{2}\)
3 0
4 \(\frac{\pi}{4}\)
Integral Calculus

86430 \(\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x\)

1 \(\frac{\pi}{2}\)
2 0
3 \(\frac{\pi}{4}\)
4 \(\pi\)
Integral Calculus

86365 For the curve \(4 x^{5}=5 y^{4}\), the ratio of the cube of the subtangent at a point on the curve to the square of the subnormal at the same point \(i\)

1 \(y\left(\frac{5}{4}\right)^{4}\)
2 \(\left(\frac{5}{4}\right)^{4}\)
3 \(\left(\frac{5}{4}\right)^{3}\)
4 \(\left(\frac{4}{5}\right)^{4}\)
Integral Calculus

86366 The value of \(\int e^{\sin x} \sin 2 x d x\) is

1 \(2 \mathrm{e}^{\sin \mathrm{x}}(\sin \mathrm{x}+1)+\mathrm{C}\)
2 \(2 \mathrm{e}^{\sin x}(\cos \mathrm{x}+1)+\mathrm{C}\)
3 \(2 \mathrm{e}^{\sin x}(\cos \mathrm{x}-1)+\mathrm{C}\)
4 \(2 \mathrm{e}^{\sin x}(\sin \mathrm{x}-1)+C\)
Integral Calculus

86431 \(\int_{0}^{1} \frac{d x}{(3 x+2)+\sqrt{3 x+2}}=\)

1 \(-\frac{2}{3} \log \left|\frac{\sqrt{5+1}}{\sqrt{2}+1}\right|\)
2 \(\frac{2}{3} \log \left|\frac{\sqrt{5+1}}{\sqrt{2}+1}\right|\)
3 \(2 \log |\sqrt{5+1}|\)
4 \(\frac{2}{3} \log |\sqrt{5+1}|\)
Integral Calculus

86429 \(\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\mathrm{n}} \theta}{\sin ^{\mathrm{n}} \theta+\cos ^{\mathrm{n}} \theta} d \theta\) is equal to

1 1
2 \(\frac{\pi}{2}\)
3 0
4 \(\frac{\pi}{4}\)
Integral Calculus

86430 \(\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x\)

1 \(\frac{\pi}{2}\)
2 0
3 \(\frac{\pi}{4}\)
4 \(\pi\)
Integral Calculus

86365 For the curve \(4 x^{5}=5 y^{4}\), the ratio of the cube of the subtangent at a point on the curve to the square of the subnormal at the same point \(i\)

1 \(y\left(\frac{5}{4}\right)^{4}\)
2 \(\left(\frac{5}{4}\right)^{4}\)
3 \(\left(\frac{5}{4}\right)^{3}\)
4 \(\left(\frac{4}{5}\right)^{4}\)
Integral Calculus

86366 The value of \(\int e^{\sin x} \sin 2 x d x\) is

1 \(2 \mathrm{e}^{\sin \mathrm{x}}(\sin \mathrm{x}+1)+\mathrm{C}\)
2 \(2 \mathrm{e}^{\sin x}(\cos \mathrm{x}+1)+\mathrm{C}\)
3 \(2 \mathrm{e}^{\sin x}(\cos \mathrm{x}-1)+\mathrm{C}\)
4 \(2 \mathrm{e}^{\sin x}(\sin \mathrm{x}-1)+C\)
Integral Calculus

86431 \(\int_{0}^{1} \frac{d x}{(3 x+2)+\sqrt{3 x+2}}=\)

1 \(-\frac{2}{3} \log \left|\frac{\sqrt{5+1}}{\sqrt{2}+1}\right|\)
2 \(\frac{2}{3} \log \left|\frac{\sqrt{5+1}}{\sqrt{2}+1}\right|\)
3 \(2 \log |\sqrt{5+1}|\)
4 \(\frac{2}{3} \log |\sqrt{5+1}|\)
Integral Calculus

86429 \(\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\mathrm{n}} \theta}{\sin ^{\mathrm{n}} \theta+\cos ^{\mathrm{n}} \theta} d \theta\) is equal to

1 1
2 \(\frac{\pi}{2}\)
3 0
4 \(\frac{\pi}{4}\)
Integral Calculus

86430 \(\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x\)

1 \(\frac{\pi}{2}\)
2 0
3 \(\frac{\pi}{4}\)
4 \(\pi\)
Integral Calculus

86365 For the curve \(4 x^{5}=5 y^{4}\), the ratio of the cube of the subtangent at a point on the curve to the square of the subnormal at the same point \(i\)

1 \(y\left(\frac{5}{4}\right)^{4}\)
2 \(\left(\frac{5}{4}\right)^{4}\)
3 \(\left(\frac{5}{4}\right)^{3}\)
4 \(\left(\frac{4}{5}\right)^{4}\)
Integral Calculus

86366 The value of \(\int e^{\sin x} \sin 2 x d x\) is

1 \(2 \mathrm{e}^{\sin \mathrm{x}}(\sin \mathrm{x}+1)+\mathrm{C}\)
2 \(2 \mathrm{e}^{\sin x}(\cos \mathrm{x}+1)+\mathrm{C}\)
3 \(2 \mathrm{e}^{\sin x}(\cos \mathrm{x}-1)+\mathrm{C}\)
4 \(2 \mathrm{e}^{\sin x}(\sin \mathrm{x}-1)+C\)
Integral Calculus

86431 \(\int_{0}^{1} \frac{d x}{(3 x+2)+\sqrt{3 x+2}}=\)

1 \(-\frac{2}{3} \log \left|\frac{\sqrt{5+1}}{\sqrt{2}+1}\right|\)
2 \(\frac{2}{3} \log \left|\frac{\sqrt{5+1}}{\sqrt{2}+1}\right|\)
3 \(2 \log |\sqrt{5+1}|\)
4 \(\frac{2}{3} \log |\sqrt{5+1}|\)
Integral Calculus

86429 \(\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\mathrm{n}} \theta}{\sin ^{\mathrm{n}} \theta+\cos ^{\mathrm{n}} \theta} d \theta\) is equal to

1 1
2 \(\frac{\pi}{2}\)
3 0
4 \(\frac{\pi}{4}\)
Integral Calculus

86430 \(\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x\)

1 \(\frac{\pi}{2}\)
2 0
3 \(\frac{\pi}{4}\)
4 \(\pi\)
Integral Calculus

86365 For the curve \(4 x^{5}=5 y^{4}\), the ratio of the cube of the subtangent at a point on the curve to the square of the subnormal at the same point \(i\)

1 \(y\left(\frac{5}{4}\right)^{4}\)
2 \(\left(\frac{5}{4}\right)^{4}\)
3 \(\left(\frac{5}{4}\right)^{3}\)
4 \(\left(\frac{4}{5}\right)^{4}\)
Integral Calculus

86366 The value of \(\int e^{\sin x} \sin 2 x d x\) is

1 \(2 \mathrm{e}^{\sin \mathrm{x}}(\sin \mathrm{x}+1)+\mathrm{C}\)
2 \(2 \mathrm{e}^{\sin x}(\cos \mathrm{x}+1)+\mathrm{C}\)
3 \(2 \mathrm{e}^{\sin x}(\cos \mathrm{x}-1)+\mathrm{C}\)
4 \(2 \mathrm{e}^{\sin x}(\sin \mathrm{x}-1)+C\)
Integral Calculus

86431 \(\int_{0}^{1} \frac{d x}{(3 x+2)+\sqrt{3 x+2}}=\)

1 \(-\frac{2}{3} \log \left|\frac{\sqrt{5+1}}{\sqrt{2}+1}\right|\)
2 \(\frac{2}{3} \log \left|\frac{\sqrt{5+1}}{\sqrt{2}+1}\right|\)
3 \(2 \log |\sqrt{5+1}|\)
4 \(\frac{2}{3} \log |\sqrt{5+1}|\)