Differentiation of Function
Limits, Continuity and Differentiability

80302 If \(\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}=4\), then \(\frac{d y}{d x}=\)

1 \(\frac{y+7 x}{7 y-x}\)
2 \(\frac{7 y-x}{y-7 x}\)
3 \(\frac{y-7 x}{7 x-y}\)
4 \(\frac{7 x+y}{x-7 y}\)
Limits, Continuity and Differentiability

80303 If \(\sin (x+y)+\cos (x+y)=\sin \left[\cos ^{-1}\left(\frac{1}{3}\right)\right]\), then \(\frac{d y}{d x}=\)

1 \(\frac{1}{2}\)
2 1
3 0
4 -1
Limits, Continuity and Differentiability

80304 If \(f(x)=\sin ^{-1}\left(\sqrt{\frac{1-x}{2}}\right)\), then \(f^{\prime}(x)=\)

1 \(\frac{1}{2 \sqrt{1+\mathrm{x}^{2}}}\)
2 \(\frac{-1}{2 \sqrt{1-x^{2}}}\)
3 \(\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\)
4 \(\frac{-1}{2 \sqrt{1+\mathrm{x}^{2}}}\)
Limits, Continuity and Differentiability

80305 If \(y=\sec \left(\tan ^{-1} x\right)\), then \(\frac{d y}{d x}\) at \(x=1\) is

1 \(\sqrt{2}\)
2 1
3 \(\frac{1}{2}\)
4 \(\frac{1}{\sqrt{2}}\)
Limits, Continuity and Differentiability

80302 If \(\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}=4\), then \(\frac{d y}{d x}=\)

1 \(\frac{y+7 x}{7 y-x}\)
2 \(\frac{7 y-x}{y-7 x}\)
3 \(\frac{y-7 x}{7 x-y}\)
4 \(\frac{7 x+y}{x-7 y}\)
Limits, Continuity and Differentiability

80303 If \(\sin (x+y)+\cos (x+y)=\sin \left[\cos ^{-1}\left(\frac{1}{3}\right)\right]\), then \(\frac{d y}{d x}=\)

1 \(\frac{1}{2}\)
2 1
3 0
4 -1
Limits, Continuity and Differentiability

80304 If \(f(x)=\sin ^{-1}\left(\sqrt{\frac{1-x}{2}}\right)\), then \(f^{\prime}(x)=\)

1 \(\frac{1}{2 \sqrt{1+\mathrm{x}^{2}}}\)
2 \(\frac{-1}{2 \sqrt{1-x^{2}}}\)
3 \(\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\)
4 \(\frac{-1}{2 \sqrt{1+\mathrm{x}^{2}}}\)
Limits, Continuity and Differentiability

80305 If \(y=\sec \left(\tan ^{-1} x\right)\), then \(\frac{d y}{d x}\) at \(x=1\) is

1 \(\sqrt{2}\)
2 1
3 \(\frac{1}{2}\)
4 \(\frac{1}{\sqrt{2}}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

80302 If \(\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}=4\), then \(\frac{d y}{d x}=\)

1 \(\frac{y+7 x}{7 y-x}\)
2 \(\frac{7 y-x}{y-7 x}\)
3 \(\frac{y-7 x}{7 x-y}\)
4 \(\frac{7 x+y}{x-7 y}\)
Limits, Continuity and Differentiability

80303 If \(\sin (x+y)+\cos (x+y)=\sin \left[\cos ^{-1}\left(\frac{1}{3}\right)\right]\), then \(\frac{d y}{d x}=\)

1 \(\frac{1}{2}\)
2 1
3 0
4 -1
Limits, Continuity and Differentiability

80304 If \(f(x)=\sin ^{-1}\left(\sqrt{\frac{1-x}{2}}\right)\), then \(f^{\prime}(x)=\)

1 \(\frac{1}{2 \sqrt{1+\mathrm{x}^{2}}}\)
2 \(\frac{-1}{2 \sqrt{1-x^{2}}}\)
3 \(\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\)
4 \(\frac{-1}{2 \sqrt{1+\mathrm{x}^{2}}}\)
Limits, Continuity and Differentiability

80305 If \(y=\sec \left(\tan ^{-1} x\right)\), then \(\frac{d y}{d x}\) at \(x=1\) is

1 \(\sqrt{2}\)
2 1
3 \(\frac{1}{2}\)
4 \(\frac{1}{\sqrt{2}}\)
Limits, Continuity and Differentiability

80302 If \(\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}=4\), then \(\frac{d y}{d x}=\)

1 \(\frac{y+7 x}{7 y-x}\)
2 \(\frac{7 y-x}{y-7 x}\)
3 \(\frac{y-7 x}{7 x-y}\)
4 \(\frac{7 x+y}{x-7 y}\)
Limits, Continuity and Differentiability

80303 If \(\sin (x+y)+\cos (x+y)=\sin \left[\cos ^{-1}\left(\frac{1}{3}\right)\right]\), then \(\frac{d y}{d x}=\)

1 \(\frac{1}{2}\)
2 1
3 0
4 -1
Limits, Continuity and Differentiability

80304 If \(f(x)=\sin ^{-1}\left(\sqrt{\frac{1-x}{2}}\right)\), then \(f^{\prime}(x)=\)

1 \(\frac{1}{2 \sqrt{1+\mathrm{x}^{2}}}\)
2 \(\frac{-1}{2 \sqrt{1-x^{2}}}\)
3 \(\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\)
4 \(\frac{-1}{2 \sqrt{1+\mathrm{x}^{2}}}\)
Limits, Continuity and Differentiability

80305 If \(y=\sec \left(\tan ^{-1} x\right)\), then \(\frac{d y}{d x}\) at \(x=1\) is

1 \(\sqrt{2}\)
2 1
3 \(\frac{1}{2}\)
4 \(\frac{1}{\sqrt{2}}\)