Differentiation of Function
Limits, Continuity and Differentiability

80306 If x=ey+ey+ey+e then dydx=

1 1x
2 x1+x
3 1xx
4 1+xx
Limits, Continuity and Differentiability

80307 If y=cos2(5x2)sin2(5x2), then (d2ydx2)=

1 51y2
2 25y
3 25y
4 51y2
[MНT CET-2020]
Limits, Continuity and Differentiability

80308 If y=2ax and (dydx)x=1=log256, then a=

1 3
2 2
3 4
4 8
Limits, Continuity and Differentiability

80309 If xpyq=(x+y)p+q, then dydx is equal to

1 yx
2 pyqx
3 xy
4 qypx
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

80306 If x=ey+ey+ey+e then dydx=

1 1x
2 x1+x
3 1xx
4 1+xx
Limits, Continuity and Differentiability

80307 If y=cos2(5x2)sin2(5x2), then (d2ydx2)=

1 51y2
2 25y
3 25y
4 51y2
[MНT CET-2020]
Limits, Continuity and Differentiability

80308 If y=2ax and (dydx)x=1=log256, then a=

1 3
2 2
3 4
4 8
Limits, Continuity and Differentiability

80309 If xpyq=(x+y)p+q, then dydx is equal to

1 yx
2 pyqx
3 xy
4 qypx
Limits, Continuity and Differentiability

80306 If x=ey+ey+ey+e then dydx=

1 1x
2 x1+x
3 1xx
4 1+xx
Limits, Continuity and Differentiability

80307 If y=cos2(5x2)sin2(5x2), then (d2ydx2)=

1 51y2
2 25y
3 25y
4 51y2
[MНT CET-2020]
Limits, Continuity and Differentiability

80308 If y=2ax and (dydx)x=1=log256, then a=

1 3
2 2
3 4
4 8
Limits, Continuity and Differentiability

80309 If xpyq=(x+y)p+q, then dydx is equal to

1 yx
2 pyqx
3 xy
4 qypx
Limits, Continuity and Differentiability

80306 If x=ey+ey+ey+e then dydx=

1 1x
2 x1+x
3 1xx
4 1+xx
Limits, Continuity and Differentiability

80307 If y=cos2(5x2)sin2(5x2), then (d2ydx2)=

1 51y2
2 25y
3 25y
4 51y2
[MНT CET-2020]
Limits, Continuity and Differentiability

80308 If y=2ax and (dydx)x=1=log256, then a=

1 3
2 2
3 4
4 8
Limits, Continuity and Differentiability

80309 If xpyq=(x+y)p+q, then dydx is equal to

1 yx
2 pyqx
3 xy
4 qypx
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here