Differentiation of Function
Limits, Continuity and Differentiability

80306 If \(x=e^{y+e^{y+e^{y+e}}}\) then \(\frac{d y}{d x}=\)

1 \(\frac{1}{\mathrm{x}}\)
2 \(\frac{x}{1+x}\)
3 \(\frac{1-x}{x}\)
4 \(\frac{1+\mathrm{x}}{\mathrm{x}}\)
Limits, Continuity and Differentiability

80307 If \(y=\cos ^{2}\left(\frac{5 x}{2}\right)-\sin ^{2}\left(\frac{5 x}{2}\right)\), then \(\left(\frac{d^{2} y}{d x^{2}}\right)=\)

1 \(5 \sqrt{1-y^{2}}\)
2 \(25 y\)
3 \(-25 y\)
4 \(-5 \sqrt{1-y^{2}}\)
[MНT CET-2020]
Limits, Continuity and Differentiability

80308 If \(y=2^{a x}\) and \(\left(\frac{d y}{d x}\right)_{x=1}=\log 256\), then \(a=\)

1 3
2 2
3 4
4 8
Limits, Continuity and Differentiability

80309 If \(x^{p} y^{q}=(x+y)^{p+q}\), then \(\frac{d y}{d x}\) is equal to

1 \(\frac{y}{x}\)
2 \(\frac{p y}{q x}\)
3 \(\frac{x}{y}\)
4 \(\frac{\mathrm{qy}}{\mathrm{px}}\)
Limits, Continuity and Differentiability

80306 If \(x=e^{y+e^{y+e^{y+e}}}\) then \(\frac{d y}{d x}=\)

1 \(\frac{1}{\mathrm{x}}\)
2 \(\frac{x}{1+x}\)
3 \(\frac{1-x}{x}\)
4 \(\frac{1+\mathrm{x}}{\mathrm{x}}\)
Limits, Continuity and Differentiability

80307 If \(y=\cos ^{2}\left(\frac{5 x}{2}\right)-\sin ^{2}\left(\frac{5 x}{2}\right)\), then \(\left(\frac{d^{2} y}{d x^{2}}\right)=\)

1 \(5 \sqrt{1-y^{2}}\)
2 \(25 y\)
3 \(-25 y\)
4 \(-5 \sqrt{1-y^{2}}\)
[MНT CET-2020]
Limits, Continuity and Differentiability

80308 If \(y=2^{a x}\) and \(\left(\frac{d y}{d x}\right)_{x=1}=\log 256\), then \(a=\)

1 3
2 2
3 4
4 8
Limits, Continuity and Differentiability

80309 If \(x^{p} y^{q}=(x+y)^{p+q}\), then \(\frac{d y}{d x}\) is equal to

1 \(\frac{y}{x}\)
2 \(\frac{p y}{q x}\)
3 \(\frac{x}{y}\)
4 \(\frac{\mathrm{qy}}{\mathrm{px}}\)
Limits, Continuity and Differentiability

80306 If \(x=e^{y+e^{y+e^{y+e}}}\) then \(\frac{d y}{d x}=\)

1 \(\frac{1}{\mathrm{x}}\)
2 \(\frac{x}{1+x}\)
3 \(\frac{1-x}{x}\)
4 \(\frac{1+\mathrm{x}}{\mathrm{x}}\)
Limits, Continuity and Differentiability

80307 If \(y=\cos ^{2}\left(\frac{5 x}{2}\right)-\sin ^{2}\left(\frac{5 x}{2}\right)\), then \(\left(\frac{d^{2} y}{d x^{2}}\right)=\)

1 \(5 \sqrt{1-y^{2}}\)
2 \(25 y\)
3 \(-25 y\)
4 \(-5 \sqrt{1-y^{2}}\)
[MНT CET-2020]
Limits, Continuity and Differentiability

80308 If \(y=2^{a x}\) and \(\left(\frac{d y}{d x}\right)_{x=1}=\log 256\), then \(a=\)

1 3
2 2
3 4
4 8
Limits, Continuity and Differentiability

80309 If \(x^{p} y^{q}=(x+y)^{p+q}\), then \(\frac{d y}{d x}\) is equal to

1 \(\frac{y}{x}\)
2 \(\frac{p y}{q x}\)
3 \(\frac{x}{y}\)
4 \(\frac{\mathrm{qy}}{\mathrm{px}}\)
Limits, Continuity and Differentiability

80306 If \(x=e^{y+e^{y+e^{y+e}}}\) then \(\frac{d y}{d x}=\)

1 \(\frac{1}{\mathrm{x}}\)
2 \(\frac{x}{1+x}\)
3 \(\frac{1-x}{x}\)
4 \(\frac{1+\mathrm{x}}{\mathrm{x}}\)
Limits, Continuity and Differentiability

80307 If \(y=\cos ^{2}\left(\frac{5 x}{2}\right)-\sin ^{2}\left(\frac{5 x}{2}\right)\), then \(\left(\frac{d^{2} y}{d x^{2}}\right)=\)

1 \(5 \sqrt{1-y^{2}}\)
2 \(25 y\)
3 \(-25 y\)
4 \(-5 \sqrt{1-y^{2}}\)
[MНT CET-2020]
Limits, Continuity and Differentiability

80308 If \(y=2^{a x}\) and \(\left(\frac{d y}{d x}\right)_{x=1}=\log 256\), then \(a=\)

1 3
2 2
3 4
4 8
Limits, Continuity and Differentiability

80309 If \(x^{p} y^{q}=(x+y)^{p+q}\), then \(\frac{d y}{d x}\) is equal to

1 \(\frac{y}{x}\)
2 \(\frac{p y}{q x}\)
3 \(\frac{x}{y}\)
4 \(\frac{\mathrm{qy}}{\mathrm{px}}\)