Differentiation of Function
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

80298 The derivate of \(f(\tan x)\) w.r.t.g \((\sec x)\) at \(x=\frac{\pi}{4}\), where \(f^{\prime}(1)=2\) and \(g^{\prime}(\sqrt{2})=4\) is

1 \(\sqrt{2}\)
2 \(\frac{1}{2}\)
3 2
4 \(\frac{1}{\sqrt{2}}\)
Limits, Continuity and Differentiability

80299 If \(\frac{x}{\sqrt{1+x}}+\frac{y}{\sqrt{1+y}}=0, x \neq y\), then \((1+x)^{2} \frac{d y}{d x}=\)

1 0
2 -1
3 \(\frac{1}{2}\)
4 1
Limits, Continuity and Differentiability

80300 If \(\frac{x}{x-y}=\log \left(\frac{a}{x-y}\right)\), then \(\frac{d y}{d x}=\)

1 \(\frac{2 y-x}{y}\)
2 \(\frac{2 x-y}{x}\)
3 \(2+\frac{1}{y}\)
4 \(\frac{x-2 y}{y}\)
Limits, Continuity and Differentiability

80301 If \(f(x)=\log (\sec x+\tan x)\), then \(f^{\prime}\left(\frac{\pi}{4}\right)=\)

1 \(\frac{1}{\sqrt{2}}\)
2 \(\sqrt{2}\)
3 1
4 \(\frac{2}{\sqrt{3}}\)
Limits, Continuity and Differentiability

80298 The derivate of \(f(\tan x)\) w.r.t.g \((\sec x)\) at \(x=\frac{\pi}{4}\), where \(f^{\prime}(1)=2\) and \(g^{\prime}(\sqrt{2})=4\) is

1 \(\sqrt{2}\)
2 \(\frac{1}{2}\)
3 2
4 \(\frac{1}{\sqrt{2}}\)
Limits, Continuity and Differentiability

80299 If \(\frac{x}{\sqrt{1+x}}+\frac{y}{\sqrt{1+y}}=0, x \neq y\), then \((1+x)^{2} \frac{d y}{d x}=\)

1 0
2 -1
3 \(\frac{1}{2}\)
4 1
Limits, Continuity and Differentiability

80300 If \(\frac{x}{x-y}=\log \left(\frac{a}{x-y}\right)\), then \(\frac{d y}{d x}=\)

1 \(\frac{2 y-x}{y}\)
2 \(\frac{2 x-y}{x}\)
3 \(2+\frac{1}{y}\)
4 \(\frac{x-2 y}{y}\)
Limits, Continuity and Differentiability

80301 If \(f(x)=\log (\sec x+\tan x)\), then \(f^{\prime}\left(\frac{\pi}{4}\right)=\)

1 \(\frac{1}{\sqrt{2}}\)
2 \(\sqrt{2}\)
3 1
4 \(\frac{2}{\sqrt{3}}\)
Limits, Continuity and Differentiability

80298 The derivate of \(f(\tan x)\) w.r.t.g \((\sec x)\) at \(x=\frac{\pi}{4}\), where \(f^{\prime}(1)=2\) and \(g^{\prime}(\sqrt{2})=4\) is

1 \(\sqrt{2}\)
2 \(\frac{1}{2}\)
3 2
4 \(\frac{1}{\sqrt{2}}\)
Limits, Continuity and Differentiability

80299 If \(\frac{x}{\sqrt{1+x}}+\frac{y}{\sqrt{1+y}}=0, x \neq y\), then \((1+x)^{2} \frac{d y}{d x}=\)

1 0
2 -1
3 \(\frac{1}{2}\)
4 1
Limits, Continuity and Differentiability

80300 If \(\frac{x}{x-y}=\log \left(\frac{a}{x-y}\right)\), then \(\frac{d y}{d x}=\)

1 \(\frac{2 y-x}{y}\)
2 \(\frac{2 x-y}{x}\)
3 \(2+\frac{1}{y}\)
4 \(\frac{x-2 y}{y}\)
Limits, Continuity and Differentiability

80301 If \(f(x)=\log (\sec x+\tan x)\), then \(f^{\prime}\left(\frac{\pi}{4}\right)=\)

1 \(\frac{1}{\sqrt{2}}\)
2 \(\sqrt{2}\)
3 1
4 \(\frac{2}{\sqrt{3}}\)
Limits, Continuity and Differentiability

80298 The derivate of \(f(\tan x)\) w.r.t.g \((\sec x)\) at \(x=\frac{\pi}{4}\), where \(f^{\prime}(1)=2\) and \(g^{\prime}(\sqrt{2})=4\) is

1 \(\sqrt{2}\)
2 \(\frac{1}{2}\)
3 2
4 \(\frac{1}{\sqrt{2}}\)
Limits, Continuity and Differentiability

80299 If \(\frac{x}{\sqrt{1+x}}+\frac{y}{\sqrt{1+y}}=0, x \neq y\), then \((1+x)^{2} \frac{d y}{d x}=\)

1 0
2 -1
3 \(\frac{1}{2}\)
4 1
Limits, Continuity and Differentiability

80300 If \(\frac{x}{x-y}=\log \left(\frac{a}{x-y}\right)\), then \(\frac{d y}{d x}=\)

1 \(\frac{2 y-x}{y}\)
2 \(\frac{2 x-y}{x}\)
3 \(2+\frac{1}{y}\)
4 \(\frac{x-2 y}{y}\)
Limits, Continuity and Differentiability

80301 If \(f(x)=\log (\sec x+\tan x)\), then \(f^{\prime}\left(\frac{\pi}{4}\right)=\)

1 \(\frac{1}{\sqrt{2}}\)
2 \(\sqrt{2}\)
3 1
4 \(\frac{2}{\sqrt{3}}\)