Differentiation of Function
Limits, Continuity and Differentiability

80293 If \(\sqrt{x+y}+\sqrt{y-x}=5\), then \(\left(\frac{d^{2} y}{d x^{2}}\right)=\)

1 \(\frac{-2}{5}\)
2 \(\frac{-2}{25}\)
3 \(\frac{2}{5}\)
4 \(\frac{2}{25}\)
Limits, Continuity and Differentiability

80294 If \(x=a(1-\cos \theta), y=a(\theta-\sin \theta)\), then \(\frac{d^{2} y}{d x^{2}}=\)

1 \(\frac{\sin \left(\frac{\theta}{2}\right)}{2 \mathrm{a} \cos \theta}\)
2 \(\frac{\cos ^{2}\left(\frac{\theta}{2}\right)}{2 \mathrm{a} \operatorname{cosec} \theta}\)
3 \(\frac{\operatorname{cosec} \theta}{2 \mathrm{a} \cos ^{2}\left(\frac{\theta}{2}\right)}\)
4 \(\frac{\cos \left(\frac{\theta}{2}\right)}{2 \mathrm{a} \sin \theta}\)
Limits, Continuity and Differentiability

80295 If \(y \sqrt{1-x^{2}}+x \sqrt{1-y^{2}}=1\), then \(\frac{d y}{d x}=\)

1 \(-\sqrt{\frac{1-\mathrm{x}^{2}}{1-\mathrm{y}^{2}}}\)
2 \(-\sqrt{\frac{1-y^{2}}{1-x^{2}}}\)
3 \(\sqrt{\frac{1+\mathrm{y}^{2}}{1+\mathrm{x}^{2}}}\)
4 \(\sqrt{\frac{1-x^{2}}{1-y^{2}}}\)
Limits, Continuity and Differentiability

80296 If \(y=\tan ^{-1}\left[\frac{x-\sqrt{1-x^{2}}}{x+\sqrt{1-x^{2}}}\right]\), then \(\left(\frac{d y}{d x}\right)=\)

1 \(\frac{-x}{\sqrt{1-x^{2}}}\)
2 \(\frac{-1}{\sqrt{1-x^{2}}}\)
3 \(\frac{x}{\sqrt{1-x^{2}}}\)
4 \(\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\)
Limits, Continuity and Differentiability

80297 If \(y=\tan ^{-1}\left[\sqrt{\frac{1+\cos \frac{x}{2}}{1-\cos \frac{x}{2}}}\right]\), then \(\frac{d y}{d x}=\)

1 \(\frac{-1}{3}\)
2 \(\frac{1}{4}\)
3 \(\frac{-1}{4}\)
4 \(\frac{1}{3}\)
Limits, Continuity and Differentiability

80293 If \(\sqrt{x+y}+\sqrt{y-x}=5\), then \(\left(\frac{d^{2} y}{d x^{2}}\right)=\)

1 \(\frac{-2}{5}\)
2 \(\frac{-2}{25}\)
3 \(\frac{2}{5}\)
4 \(\frac{2}{25}\)
Limits, Continuity and Differentiability

80294 If \(x=a(1-\cos \theta), y=a(\theta-\sin \theta)\), then \(\frac{d^{2} y}{d x^{2}}=\)

1 \(\frac{\sin \left(\frac{\theta}{2}\right)}{2 \mathrm{a} \cos \theta}\)
2 \(\frac{\cos ^{2}\left(\frac{\theta}{2}\right)}{2 \mathrm{a} \operatorname{cosec} \theta}\)
3 \(\frac{\operatorname{cosec} \theta}{2 \mathrm{a} \cos ^{2}\left(\frac{\theta}{2}\right)}\)
4 \(\frac{\cos \left(\frac{\theta}{2}\right)}{2 \mathrm{a} \sin \theta}\)
Limits, Continuity and Differentiability

80295 If \(y \sqrt{1-x^{2}}+x \sqrt{1-y^{2}}=1\), then \(\frac{d y}{d x}=\)

1 \(-\sqrt{\frac{1-\mathrm{x}^{2}}{1-\mathrm{y}^{2}}}\)
2 \(-\sqrt{\frac{1-y^{2}}{1-x^{2}}}\)
3 \(\sqrt{\frac{1+\mathrm{y}^{2}}{1+\mathrm{x}^{2}}}\)
4 \(\sqrt{\frac{1-x^{2}}{1-y^{2}}}\)
Limits, Continuity and Differentiability

80296 If \(y=\tan ^{-1}\left[\frac{x-\sqrt{1-x^{2}}}{x+\sqrt{1-x^{2}}}\right]\), then \(\left(\frac{d y}{d x}\right)=\)

1 \(\frac{-x}{\sqrt{1-x^{2}}}\)
2 \(\frac{-1}{\sqrt{1-x^{2}}}\)
3 \(\frac{x}{\sqrt{1-x^{2}}}\)
4 \(\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\)
Limits, Continuity and Differentiability

80297 If \(y=\tan ^{-1}\left[\sqrt{\frac{1+\cos \frac{x}{2}}{1-\cos \frac{x}{2}}}\right]\), then \(\frac{d y}{d x}=\)

1 \(\frac{-1}{3}\)
2 \(\frac{1}{4}\)
3 \(\frac{-1}{4}\)
4 \(\frac{1}{3}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

80293 If \(\sqrt{x+y}+\sqrt{y-x}=5\), then \(\left(\frac{d^{2} y}{d x^{2}}\right)=\)

1 \(\frac{-2}{5}\)
2 \(\frac{-2}{25}\)
3 \(\frac{2}{5}\)
4 \(\frac{2}{25}\)
Limits, Continuity and Differentiability

80294 If \(x=a(1-\cos \theta), y=a(\theta-\sin \theta)\), then \(\frac{d^{2} y}{d x^{2}}=\)

1 \(\frac{\sin \left(\frac{\theta}{2}\right)}{2 \mathrm{a} \cos \theta}\)
2 \(\frac{\cos ^{2}\left(\frac{\theta}{2}\right)}{2 \mathrm{a} \operatorname{cosec} \theta}\)
3 \(\frac{\operatorname{cosec} \theta}{2 \mathrm{a} \cos ^{2}\left(\frac{\theta}{2}\right)}\)
4 \(\frac{\cos \left(\frac{\theta}{2}\right)}{2 \mathrm{a} \sin \theta}\)
Limits, Continuity and Differentiability

80295 If \(y \sqrt{1-x^{2}}+x \sqrt{1-y^{2}}=1\), then \(\frac{d y}{d x}=\)

1 \(-\sqrt{\frac{1-\mathrm{x}^{2}}{1-\mathrm{y}^{2}}}\)
2 \(-\sqrt{\frac{1-y^{2}}{1-x^{2}}}\)
3 \(\sqrt{\frac{1+\mathrm{y}^{2}}{1+\mathrm{x}^{2}}}\)
4 \(\sqrt{\frac{1-x^{2}}{1-y^{2}}}\)
Limits, Continuity and Differentiability

80296 If \(y=\tan ^{-1}\left[\frac{x-\sqrt{1-x^{2}}}{x+\sqrt{1-x^{2}}}\right]\), then \(\left(\frac{d y}{d x}\right)=\)

1 \(\frac{-x}{\sqrt{1-x^{2}}}\)
2 \(\frac{-1}{\sqrt{1-x^{2}}}\)
3 \(\frac{x}{\sqrt{1-x^{2}}}\)
4 \(\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\)
Limits, Continuity and Differentiability

80297 If \(y=\tan ^{-1}\left[\sqrt{\frac{1+\cos \frac{x}{2}}{1-\cos \frac{x}{2}}}\right]\), then \(\frac{d y}{d x}=\)

1 \(\frac{-1}{3}\)
2 \(\frac{1}{4}\)
3 \(\frac{-1}{4}\)
4 \(\frac{1}{3}\)
Limits, Continuity and Differentiability

80293 If \(\sqrt{x+y}+\sqrt{y-x}=5\), then \(\left(\frac{d^{2} y}{d x^{2}}\right)=\)

1 \(\frac{-2}{5}\)
2 \(\frac{-2}{25}\)
3 \(\frac{2}{5}\)
4 \(\frac{2}{25}\)
Limits, Continuity and Differentiability

80294 If \(x=a(1-\cos \theta), y=a(\theta-\sin \theta)\), then \(\frac{d^{2} y}{d x^{2}}=\)

1 \(\frac{\sin \left(\frac{\theta}{2}\right)}{2 \mathrm{a} \cos \theta}\)
2 \(\frac{\cos ^{2}\left(\frac{\theta}{2}\right)}{2 \mathrm{a} \operatorname{cosec} \theta}\)
3 \(\frac{\operatorname{cosec} \theta}{2 \mathrm{a} \cos ^{2}\left(\frac{\theta}{2}\right)}\)
4 \(\frac{\cos \left(\frac{\theta}{2}\right)}{2 \mathrm{a} \sin \theta}\)
Limits, Continuity and Differentiability

80295 If \(y \sqrt{1-x^{2}}+x \sqrt{1-y^{2}}=1\), then \(\frac{d y}{d x}=\)

1 \(-\sqrt{\frac{1-\mathrm{x}^{2}}{1-\mathrm{y}^{2}}}\)
2 \(-\sqrt{\frac{1-y^{2}}{1-x^{2}}}\)
3 \(\sqrt{\frac{1+\mathrm{y}^{2}}{1+\mathrm{x}^{2}}}\)
4 \(\sqrt{\frac{1-x^{2}}{1-y^{2}}}\)
Limits, Continuity and Differentiability

80296 If \(y=\tan ^{-1}\left[\frac{x-\sqrt{1-x^{2}}}{x+\sqrt{1-x^{2}}}\right]\), then \(\left(\frac{d y}{d x}\right)=\)

1 \(\frac{-x}{\sqrt{1-x^{2}}}\)
2 \(\frac{-1}{\sqrt{1-x^{2}}}\)
3 \(\frac{x}{\sqrt{1-x^{2}}}\)
4 \(\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\)
Limits, Continuity and Differentiability

80297 If \(y=\tan ^{-1}\left[\sqrt{\frac{1+\cos \frac{x}{2}}{1-\cos \frac{x}{2}}}\right]\), then \(\frac{d y}{d x}=\)

1 \(\frac{-1}{3}\)
2 \(\frac{1}{4}\)
3 \(\frac{-1}{4}\)
4 \(\frac{1}{3}\)
Limits, Continuity and Differentiability

80293 If \(\sqrt{x+y}+\sqrt{y-x}=5\), then \(\left(\frac{d^{2} y}{d x^{2}}\right)=\)

1 \(\frac{-2}{5}\)
2 \(\frac{-2}{25}\)
3 \(\frac{2}{5}\)
4 \(\frac{2}{25}\)
Limits, Continuity and Differentiability

80294 If \(x=a(1-\cos \theta), y=a(\theta-\sin \theta)\), then \(\frac{d^{2} y}{d x^{2}}=\)

1 \(\frac{\sin \left(\frac{\theta}{2}\right)}{2 \mathrm{a} \cos \theta}\)
2 \(\frac{\cos ^{2}\left(\frac{\theta}{2}\right)}{2 \mathrm{a} \operatorname{cosec} \theta}\)
3 \(\frac{\operatorname{cosec} \theta}{2 \mathrm{a} \cos ^{2}\left(\frac{\theta}{2}\right)}\)
4 \(\frac{\cos \left(\frac{\theta}{2}\right)}{2 \mathrm{a} \sin \theta}\)
Limits, Continuity and Differentiability

80295 If \(y \sqrt{1-x^{2}}+x \sqrt{1-y^{2}}=1\), then \(\frac{d y}{d x}=\)

1 \(-\sqrt{\frac{1-\mathrm{x}^{2}}{1-\mathrm{y}^{2}}}\)
2 \(-\sqrt{\frac{1-y^{2}}{1-x^{2}}}\)
3 \(\sqrt{\frac{1+\mathrm{y}^{2}}{1+\mathrm{x}^{2}}}\)
4 \(\sqrt{\frac{1-x^{2}}{1-y^{2}}}\)
Limits, Continuity and Differentiability

80296 If \(y=\tan ^{-1}\left[\frac{x-\sqrt{1-x^{2}}}{x+\sqrt{1-x^{2}}}\right]\), then \(\left(\frac{d y}{d x}\right)=\)

1 \(\frac{-x}{\sqrt{1-x^{2}}}\)
2 \(\frac{-1}{\sqrt{1-x^{2}}}\)
3 \(\frac{x}{\sqrt{1-x^{2}}}\)
4 \(\frac{1}{\sqrt{1-\mathrm{x}^{2}}}\)
Limits, Continuity and Differentiability

80297 If \(y=\tan ^{-1}\left[\sqrt{\frac{1+\cos \frac{x}{2}}{1-\cos \frac{x}{2}}}\right]\), then \(\frac{d y}{d x}=\)

1 \(\frac{-1}{3}\)
2 \(\frac{1}{4}\)
3 \(\frac{-1}{4}\)
4 \(\frac{1}{3}\)