Differentiability and Continuity of Function
Limits, Continuity and Differentiability

79915 If \(f(x)=\left\{\begin{array}{cc}\log _{(1-3 x)}(1+3 x), x \neq 0 \\ k, x=0\end{array}\right.\) is continuous at \(x=0\), then value of \(k\) equals

1 -1
2 1
3 2
4 -2
Limits, Continuity and Differentiability

79916 If \(f(x)\) is continuous over \([-\pi, \pi]\) where \(f(x)\) is defined as
\(f(x)= \begin{cases}-2 \sin x, -\pi \leq x \leq \frac{-\pi}{2} \\ \alpha \sin x+\beta, -\frac{\pi}{2}\lt x\lt \frac{\pi}{2} \\ \cos x, \frac{\pi}{2} \leq x \leq \pi\end{cases}\)
then \(\alpha\) and \(\beta\) equals

1 \(\alpha=-1, \beta=1\)
2 \(\alpha=1, \beta=-1\)
3 \(\alpha=1, \beta=1\)
4 \(\alpha=\beta=0\)
Limits, Continuity and Differentiability

79917 \(\lim _{x \rightarrow 0}\left(\frac{1+5 x^{2}}{1+3 x^{2}}\right)^{\frac{1}{x^{2}}}=\)

1 \(e^{3 x}\)
2 \(\mathrm{e}^{2}\)
3 \(\frac{1}{\mathrm{e}}\)
4 \(\frac{5}{3}\)
Limits, Continuity and Differentiability

79918 \(\lim _{x \rightarrow 0} \frac{(1-\cos 2 x)(3+\cos x)}{x \tan 4 x}\) is equal to

1 \(1 / 2\)
2 1
3 2
4 \(-1 / 4\)
Limits, Continuity and Differentiability

79919 \(\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{x \cdot a^{x}-x}{1-\cos x}\) is equal to

1 \(\log \mathrm{a}\)
2 \(\frac{1}{2} \log \mathrm{a}\)
3 \(2 \log \mathrm{a}\)
4 \(2 \log 2\)
Limits, Continuity and Differentiability

79915 If \(f(x)=\left\{\begin{array}{cc}\log _{(1-3 x)}(1+3 x), x \neq 0 \\ k, x=0\end{array}\right.\) is continuous at \(x=0\), then value of \(k\) equals

1 -1
2 1
3 2
4 -2
Limits, Continuity and Differentiability

79916 If \(f(x)\) is continuous over \([-\pi, \pi]\) where \(f(x)\) is defined as
\(f(x)= \begin{cases}-2 \sin x, -\pi \leq x \leq \frac{-\pi}{2} \\ \alpha \sin x+\beta, -\frac{\pi}{2}\lt x\lt \frac{\pi}{2} \\ \cos x, \frac{\pi}{2} \leq x \leq \pi\end{cases}\)
then \(\alpha\) and \(\beta\) equals

1 \(\alpha=-1, \beta=1\)
2 \(\alpha=1, \beta=-1\)
3 \(\alpha=1, \beta=1\)
4 \(\alpha=\beta=0\)
Limits, Continuity and Differentiability

79917 \(\lim _{x \rightarrow 0}\left(\frac{1+5 x^{2}}{1+3 x^{2}}\right)^{\frac{1}{x^{2}}}=\)

1 \(e^{3 x}\)
2 \(\mathrm{e}^{2}\)
3 \(\frac{1}{\mathrm{e}}\)
4 \(\frac{5}{3}\)
Limits, Continuity and Differentiability

79918 \(\lim _{x \rightarrow 0} \frac{(1-\cos 2 x)(3+\cos x)}{x \tan 4 x}\) is equal to

1 \(1 / 2\)
2 1
3 2
4 \(-1 / 4\)
Limits, Continuity and Differentiability

79919 \(\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{x \cdot a^{x}-x}{1-\cos x}\) is equal to

1 \(\log \mathrm{a}\)
2 \(\frac{1}{2} \log \mathrm{a}\)
3 \(2 \log \mathrm{a}\)
4 \(2 \log 2\)
Limits, Continuity and Differentiability

79915 If \(f(x)=\left\{\begin{array}{cc}\log _{(1-3 x)}(1+3 x), x \neq 0 \\ k, x=0\end{array}\right.\) is continuous at \(x=0\), then value of \(k\) equals

1 -1
2 1
3 2
4 -2
Limits, Continuity and Differentiability

79916 If \(f(x)\) is continuous over \([-\pi, \pi]\) where \(f(x)\) is defined as
\(f(x)= \begin{cases}-2 \sin x, -\pi \leq x \leq \frac{-\pi}{2} \\ \alpha \sin x+\beta, -\frac{\pi}{2}\lt x\lt \frac{\pi}{2} \\ \cos x, \frac{\pi}{2} \leq x \leq \pi\end{cases}\)
then \(\alpha\) and \(\beta\) equals

1 \(\alpha=-1, \beta=1\)
2 \(\alpha=1, \beta=-1\)
3 \(\alpha=1, \beta=1\)
4 \(\alpha=\beta=0\)
Limits, Continuity and Differentiability

79917 \(\lim _{x \rightarrow 0}\left(\frac{1+5 x^{2}}{1+3 x^{2}}\right)^{\frac{1}{x^{2}}}=\)

1 \(e^{3 x}\)
2 \(\mathrm{e}^{2}\)
3 \(\frac{1}{\mathrm{e}}\)
4 \(\frac{5}{3}\)
Limits, Continuity and Differentiability

79918 \(\lim _{x \rightarrow 0} \frac{(1-\cos 2 x)(3+\cos x)}{x \tan 4 x}\) is equal to

1 \(1 / 2\)
2 1
3 2
4 \(-1 / 4\)
Limits, Continuity and Differentiability

79919 \(\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{x \cdot a^{x}-x}{1-\cos x}\) is equal to

1 \(\log \mathrm{a}\)
2 \(\frac{1}{2} \log \mathrm{a}\)
3 \(2 \log \mathrm{a}\)
4 \(2 \log 2\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

79915 If \(f(x)=\left\{\begin{array}{cc}\log _{(1-3 x)}(1+3 x), x \neq 0 \\ k, x=0\end{array}\right.\) is continuous at \(x=0\), then value of \(k\) equals

1 -1
2 1
3 2
4 -2
Limits, Continuity and Differentiability

79916 If \(f(x)\) is continuous over \([-\pi, \pi]\) where \(f(x)\) is defined as
\(f(x)= \begin{cases}-2 \sin x, -\pi \leq x \leq \frac{-\pi}{2} \\ \alpha \sin x+\beta, -\frac{\pi}{2}\lt x\lt \frac{\pi}{2} \\ \cos x, \frac{\pi}{2} \leq x \leq \pi\end{cases}\)
then \(\alpha\) and \(\beta\) equals

1 \(\alpha=-1, \beta=1\)
2 \(\alpha=1, \beta=-1\)
3 \(\alpha=1, \beta=1\)
4 \(\alpha=\beta=0\)
Limits, Continuity and Differentiability

79917 \(\lim _{x \rightarrow 0}\left(\frac{1+5 x^{2}}{1+3 x^{2}}\right)^{\frac{1}{x^{2}}}=\)

1 \(e^{3 x}\)
2 \(\mathrm{e}^{2}\)
3 \(\frac{1}{\mathrm{e}}\)
4 \(\frac{5}{3}\)
Limits, Continuity and Differentiability

79918 \(\lim _{x \rightarrow 0} \frac{(1-\cos 2 x)(3+\cos x)}{x \tan 4 x}\) is equal to

1 \(1 / 2\)
2 1
3 2
4 \(-1 / 4\)
Limits, Continuity and Differentiability

79919 \(\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{x \cdot a^{x}-x}{1-\cos x}\) is equal to

1 \(\log \mathrm{a}\)
2 \(\frac{1}{2} \log \mathrm{a}\)
3 \(2 \log \mathrm{a}\)
4 \(2 \log 2\)
Limits, Continuity and Differentiability

79915 If \(f(x)=\left\{\begin{array}{cc}\log _{(1-3 x)}(1+3 x), x \neq 0 \\ k, x=0\end{array}\right.\) is continuous at \(x=0\), then value of \(k\) equals

1 -1
2 1
3 2
4 -2
Limits, Continuity and Differentiability

79916 If \(f(x)\) is continuous over \([-\pi, \pi]\) where \(f(x)\) is defined as
\(f(x)= \begin{cases}-2 \sin x, -\pi \leq x \leq \frac{-\pi}{2} \\ \alpha \sin x+\beta, -\frac{\pi}{2}\lt x\lt \frac{\pi}{2} \\ \cos x, \frac{\pi}{2} \leq x \leq \pi\end{cases}\)
then \(\alpha\) and \(\beta\) equals

1 \(\alpha=-1, \beta=1\)
2 \(\alpha=1, \beta=-1\)
3 \(\alpha=1, \beta=1\)
4 \(\alpha=\beta=0\)
Limits, Continuity and Differentiability

79917 \(\lim _{x \rightarrow 0}\left(\frac{1+5 x^{2}}{1+3 x^{2}}\right)^{\frac{1}{x^{2}}}=\)

1 \(e^{3 x}\)
2 \(\mathrm{e}^{2}\)
3 \(\frac{1}{\mathrm{e}}\)
4 \(\frac{5}{3}\)
Limits, Continuity and Differentiability

79918 \(\lim _{x \rightarrow 0} \frac{(1-\cos 2 x)(3+\cos x)}{x \tan 4 x}\) is equal to

1 \(1 / 2\)
2 1
3 2
4 \(-1 / 4\)
Limits, Continuity and Differentiability

79919 \(\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{x \cdot a^{x}-x}{1-\cos x}\) is equal to

1 \(\log \mathrm{a}\)
2 \(\frac{1}{2} \log \mathrm{a}\)
3 \(2 \log \mathrm{a}\)
4 \(2 \log 2\)