79911
If \(f(x)=\left\{\begin{array}{cc}\frac{\log (1+2 a x)-\log (1-b x)}{x}, x \neq 0 \\ k, x=0\end{array}\right.\) is continuous at \(x=0\), then \(k=\)
79914
The value of \(k\) if \(f(x)\) is continuous at \(x=\frac{\pi}{2}\), where \(\begin{aligned} f(x) & =\frac{k \cos x}{\pi-2 x}, & & \text { for } & & x \neq \frac{\pi}{2} \\ & =3, & & \text { for } & & x=\frac{\pi}{2}\end{aligned}\) is
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Limits, Continuity and Differentiability
79911
If \(f(x)=\left\{\begin{array}{cc}\frac{\log (1+2 a x)-\log (1-b x)}{x}, x \neq 0 \\ k, x=0\end{array}\right.\) is continuous at \(x=0\), then \(k=\)
79914
The value of \(k\) if \(f(x)\) is continuous at \(x=\frac{\pi}{2}\), where \(\begin{aligned} f(x) & =\frac{k \cos x}{\pi-2 x}, & & \text { for } & & x \neq \frac{\pi}{2} \\ & =3, & & \text { for } & & x=\frac{\pi}{2}\end{aligned}\) is
79911
If \(f(x)=\left\{\begin{array}{cc}\frac{\log (1+2 a x)-\log (1-b x)}{x}, x \neq 0 \\ k, x=0\end{array}\right.\) is continuous at \(x=0\), then \(k=\)
79914
The value of \(k\) if \(f(x)\) is continuous at \(x=\frac{\pi}{2}\), where \(\begin{aligned} f(x) & =\frac{k \cos x}{\pi-2 x}, & & \text { for } & & x \neq \frac{\pi}{2} \\ & =3, & & \text { for } & & x=\frac{\pi}{2}\end{aligned}\) is
79911
If \(f(x)=\left\{\begin{array}{cc}\frac{\log (1+2 a x)-\log (1-b x)}{x}, x \neq 0 \\ k, x=0\end{array}\right.\) is continuous at \(x=0\), then \(k=\)
79914
The value of \(k\) if \(f(x)\) is continuous at \(x=\frac{\pi}{2}\), where \(\begin{aligned} f(x) & =\frac{k \cos x}{\pi-2 x}, & & \text { for } & & x \neq \frac{\pi}{2} \\ & =3, & & \text { for } & & x=\frac{\pi}{2}\end{aligned}\) is