Differentiability and Continuity of Function
Limits, Continuity and Differentiability

79906 If the function
\(f(x)=\frac{\log (1+\mathbf{a x})-\log (1-\mathbf{b x})}{x}, x \neq 0 \text { is }\)
continuous at \(\mathrm{x}=\mathbf{0}\), then \(\mathrm{f}(0)=\)

1 \(\log a+\log b\)
2 \(\log a-\log b\)
3 \(\mathrm{a}+\mathrm{b}\)
4 \(a-b\)
Limits, Continuity and Differentiability

79907 If \(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\log \left(\sec ^2 \mathbf{x}\right)^{\cot ^2 \mathbf{x}}, & & \text { for } \mathbf{x} \neq 0 \\ & =\mathbf{k}, & & \text { for } \mathbf{x}=0\end{aligned}\)
is continuous at \(x=0\) then, \(k\) is

1 \(\mathrm{e}^{-1}\)
2 (c.) e
3 1
Limits, Continuity and Differentiability

79908 For what value of \(\mathrm{k}\), the function defined by
\(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\frac{\log (1+2 x) \sin x^{\circ}}{x^2}, & & \text { for } x \neq 0 \\ & =k, & & \text { for } x=0\end{aligned}\)
is continuous at \(\mathrm{x}=\mathbf{0}\) ?

1 2
2 \(\frac{1}{2}\)
3 \(\frac{\pi}{90}\)
4 \(\frac{90}{\pi}\)
Limits, Continuity and Differentiability

79910 Function \(f(x)=\left\{\begin{array}{cc}\frac{x+|x|}{x}, \text { for } x \neq 0 \\ 3, \text { for } x=0\end{array}\right.\), then

1 \(f\) is continuous at \(x=0\)
2 \(\lim _{x \rightarrow 0} f(x) \neq f(0)\)
3 \(f\) is not defined at \(x=0\)
4 \(\mathrm{f}\) is discontinuous at \(\mathrm{x}=0\)
Limits, Continuity and Differentiability

79906 If the function
\(f(x)=\frac{\log (1+\mathbf{a x})-\log (1-\mathbf{b x})}{x}, x \neq 0 \text { is }\)
continuous at \(\mathrm{x}=\mathbf{0}\), then \(\mathrm{f}(0)=\)

1 \(\log a+\log b\)
2 \(\log a-\log b\)
3 \(\mathrm{a}+\mathrm{b}\)
4 \(a-b\)
Limits, Continuity and Differentiability

79907 If \(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\log \left(\sec ^2 \mathbf{x}\right)^{\cot ^2 \mathbf{x}}, & & \text { for } \mathbf{x} \neq 0 \\ & =\mathbf{k}, & & \text { for } \mathbf{x}=0\end{aligned}\)
is continuous at \(x=0\) then, \(k\) is

1 \(\mathrm{e}^{-1}\)
2 (c.) e
3 1
Limits, Continuity and Differentiability

79908 For what value of \(\mathrm{k}\), the function defined by
\(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\frac{\log (1+2 x) \sin x^{\circ}}{x^2}, & & \text { for } x \neq 0 \\ & =k, & & \text { for } x=0\end{aligned}\)
is continuous at \(\mathrm{x}=\mathbf{0}\) ?

1 2
2 \(\frac{1}{2}\)
3 \(\frac{\pi}{90}\)
4 \(\frac{90}{\pi}\)
Limits, Continuity and Differentiability

79910 Function \(f(x)=\left\{\begin{array}{cc}\frac{x+|x|}{x}, \text { for } x \neq 0 \\ 3, \text { for } x=0\end{array}\right.\), then

1 \(f\) is continuous at \(x=0\)
2 \(\lim _{x \rightarrow 0} f(x) \neq f(0)\)
3 \(f\) is not defined at \(x=0\)
4 \(\mathrm{f}\) is discontinuous at \(\mathrm{x}=0\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

79906 If the function
\(f(x)=\frac{\log (1+\mathbf{a x})-\log (1-\mathbf{b x})}{x}, x \neq 0 \text { is }\)
continuous at \(\mathrm{x}=\mathbf{0}\), then \(\mathrm{f}(0)=\)

1 \(\log a+\log b\)
2 \(\log a-\log b\)
3 \(\mathrm{a}+\mathrm{b}\)
4 \(a-b\)
Limits, Continuity and Differentiability

79907 If \(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\log \left(\sec ^2 \mathbf{x}\right)^{\cot ^2 \mathbf{x}}, & & \text { for } \mathbf{x} \neq 0 \\ & =\mathbf{k}, & & \text { for } \mathbf{x}=0\end{aligned}\)
is continuous at \(x=0\) then, \(k\) is

1 \(\mathrm{e}^{-1}\)
2 (c.) e
3 1
Limits, Continuity and Differentiability

79908 For what value of \(\mathrm{k}\), the function defined by
\(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\frac{\log (1+2 x) \sin x^{\circ}}{x^2}, & & \text { for } x \neq 0 \\ & =k, & & \text { for } x=0\end{aligned}\)
is continuous at \(\mathrm{x}=\mathbf{0}\) ?

1 2
2 \(\frac{1}{2}\)
3 \(\frac{\pi}{90}\)
4 \(\frac{90}{\pi}\)
Limits, Continuity and Differentiability

79910 Function \(f(x)=\left\{\begin{array}{cc}\frac{x+|x|}{x}, \text { for } x \neq 0 \\ 3, \text { for } x=0\end{array}\right.\), then

1 \(f\) is continuous at \(x=0\)
2 \(\lim _{x \rightarrow 0} f(x) \neq f(0)\)
3 \(f\) is not defined at \(x=0\)
4 \(\mathrm{f}\) is discontinuous at \(\mathrm{x}=0\)
Limits, Continuity and Differentiability

79906 If the function
\(f(x)=\frac{\log (1+\mathbf{a x})-\log (1-\mathbf{b x})}{x}, x \neq 0 \text { is }\)
continuous at \(\mathrm{x}=\mathbf{0}\), then \(\mathrm{f}(0)=\)

1 \(\log a+\log b\)
2 \(\log a-\log b\)
3 \(\mathrm{a}+\mathrm{b}\)
4 \(a-b\)
Limits, Continuity and Differentiability

79907 If \(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\log \left(\sec ^2 \mathbf{x}\right)^{\cot ^2 \mathbf{x}}, & & \text { for } \mathbf{x} \neq 0 \\ & =\mathbf{k}, & & \text { for } \mathbf{x}=0\end{aligned}\)
is continuous at \(x=0\) then, \(k\) is

1 \(\mathrm{e}^{-1}\)
2 (c.) e
3 1
Limits, Continuity and Differentiability

79908 For what value of \(\mathrm{k}\), the function defined by
\(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\frac{\log (1+2 x) \sin x^{\circ}}{x^2}, & & \text { for } x \neq 0 \\ & =k, & & \text { for } x=0\end{aligned}\)
is continuous at \(\mathrm{x}=\mathbf{0}\) ?

1 2
2 \(\frac{1}{2}\)
3 \(\frac{\pi}{90}\)
4 \(\frac{90}{\pi}\)
Limits, Continuity and Differentiability

79910 Function \(f(x)=\left\{\begin{array}{cc}\frac{x+|x|}{x}, \text { for } x \neq 0 \\ 3, \text { for } x=0\end{array}\right.\), then

1 \(f\) is continuous at \(x=0\)
2 \(\lim _{x \rightarrow 0} f(x) \neq f(0)\)
3 \(f\) is not defined at \(x=0\)
4 \(\mathrm{f}\) is discontinuous at \(\mathrm{x}=0\)