79908
For what value of \(\mathrm{k}\), the function defined by
\(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\frac{\log (1+2 x) \sin x^{\circ}}{x^2}, & & \text { for } x \neq 0 \\ & =k, & & \text { for } x=0\end{aligned}\)
is continuous at \(\mathrm{x}=\mathbf{0}\) ?
79908
For what value of \(\mathrm{k}\), the function defined by
\(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\frac{\log (1+2 x) \sin x^{\circ}}{x^2}, & & \text { for } x \neq 0 \\ & =k, & & \text { for } x=0\end{aligned}\)
is continuous at \(\mathrm{x}=\mathbf{0}\) ?
79908
For what value of \(\mathrm{k}\), the function defined by
\(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\frac{\log (1+2 x) \sin x^{\circ}}{x^2}, & & \text { for } x \neq 0 \\ & =k, & & \text { for } x=0\end{aligned}\)
is continuous at \(\mathrm{x}=\mathbf{0}\) ?
79908
For what value of \(\mathrm{k}\), the function defined by
\(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\frac{\log (1+2 x) \sin x^{\circ}}{x^2}, & & \text { for } x \neq 0 \\ & =k, & & \text { for } x=0\end{aligned}\)
is continuous at \(\mathrm{x}=\mathbf{0}\) ?