79916
If \(f(x)\) is continuous over \([-\pi, \pi]\) where \(f(x)\) is defined as
\(f(x)= \begin{cases}-2 \sin x, -\pi \leq x \leq \frac{-\pi}{2} \\ \alpha \sin x+\beta, -\frac{\pi}{2}\lt x\lt \frac{\pi}{2} \\ \cos x, \frac{\pi}{2} \leq x \leq \pi\end{cases}\)
then \(\alpha\) and \(\beta\) equals
79916
If \(f(x)\) is continuous over \([-\pi, \pi]\) where \(f(x)\) is defined as
\(f(x)= \begin{cases}-2 \sin x, -\pi \leq x \leq \frac{-\pi}{2} \\ \alpha \sin x+\beta, -\frac{\pi}{2}\lt x\lt \frac{\pi}{2} \\ \cos x, \frac{\pi}{2} \leq x \leq \pi\end{cases}\)
then \(\alpha\) and \(\beta\) equals
79916
If \(f(x)\) is continuous over \([-\pi, \pi]\) where \(f(x)\) is defined as
\(f(x)= \begin{cases}-2 \sin x, -\pi \leq x \leq \frac{-\pi}{2} \\ \alpha \sin x+\beta, -\frac{\pi}{2}\lt x\lt \frac{\pi}{2} \\ \cos x, \frac{\pi}{2} \leq x \leq \pi\end{cases}\)
then \(\alpha\) and \(\beta\) equals
79916
If \(f(x)\) is continuous over \([-\pi, \pi]\) where \(f(x)\) is defined as
\(f(x)= \begin{cases}-2 \sin x, -\pi \leq x \leq \frac{-\pi}{2} \\ \alpha \sin x+\beta, -\frac{\pi}{2}\lt x\lt \frac{\pi}{2} \\ \cos x, \frac{\pi}{2} \leq x \leq \pi\end{cases}\)
then \(\alpha\) and \(\beta\) equals
79916
If \(f(x)\) is continuous over \([-\pi, \pi]\) where \(f(x)\) is defined as
\(f(x)= \begin{cases}-2 \sin x, -\pi \leq x \leq \frac{-\pi}{2} \\ \alpha \sin x+\beta, -\frac{\pi}{2}\lt x\lt \frac{\pi}{2} \\ \cos x, \frac{\pi}{2} \leq x \leq \pi\end{cases}\)
then \(\alpha\) and \(\beta\) equals