Differentiability and Continuity of Function
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

79890 If \(\begin{aligned} f(x) & =\frac{4 \sin \pi x}{5 x}, \text { for } x \neq 0 \\ =2 k, & \text { for } x=0\end{aligned}\)
is continuous at \(x=0\), then the value of \(k\) is

1 \(\frac{4 \pi}{5}\)
2 \(\frac{\pi}{5}\)
3 \(\frac{2 \pi}{5}\)
4 \(\frac{\pi}{10}\)
Limits, Continuity and Differentiability

79891 If \(f(x)=\frac{1-\sin x+\cos x}{1+\sin x+\cos x}\), for \(x \neq \pi\) is
continuous at \(\mathrm{x}=\pi\), then \(\mathrm{f}(\pi)=\)

1 -1
2 2
3 0
4 1
Limits, Continuity and Differentiability

79892 If
\(\begin{aligned} f(x) & =\frac{\left(\mathrm{e}^{3 x}-1\right) \sin x^0}{x^2}, & & \text { if } x \neq 0 \\ & =\frac{\pi}{60}, & & \text { if } x=0\end{aligned}\)

1 \(\lim _{x \rightarrow 0} f(x)=3\)
2 f has removable discontinuity at \(x=0\)
3 \(f\) is continuous at \(x=0\)
4 f has irremovable discontinuity at \(x=0\)
Limits, Continuity and Differentiability

79893 If
\(\begin{aligned} & f(x)=\left[\tan \left(\frac{\pi}{4}+\mathbf{x}\right)\right]^{\frac{1}{x}} \text { if } x \neq 0 \\ & =\mathbf{k} \quad \text { if } \mathbf{x}=\mathbf{0}, \\ & \end{aligned}\)
is continuous at \(x=0\) then \(k=\)

1 e
2 \(\sqrt{\mathrm{e}}\)
3 \(\mathrm{e}^{4}\)
4 \(\mathrm{e}^{2}\)
Limits, Continuity and Differentiability

79890 If \(\begin{aligned} f(x) & =\frac{4 \sin \pi x}{5 x}, \text { for } x \neq 0 \\ =2 k, & \text { for } x=0\end{aligned}\)
is continuous at \(x=0\), then the value of \(k\) is

1 \(\frac{4 \pi}{5}\)
2 \(\frac{\pi}{5}\)
3 \(\frac{2 \pi}{5}\)
4 \(\frac{\pi}{10}\)
Limits, Continuity and Differentiability

79891 If \(f(x)=\frac{1-\sin x+\cos x}{1+\sin x+\cos x}\), for \(x \neq \pi\) is
continuous at \(\mathrm{x}=\pi\), then \(\mathrm{f}(\pi)=\)

1 -1
2 2
3 0
4 1
Limits, Continuity and Differentiability

79892 If
\(\begin{aligned} f(x) & =\frac{\left(\mathrm{e}^{3 x}-1\right) \sin x^0}{x^2}, & & \text { if } x \neq 0 \\ & =\frac{\pi}{60}, & & \text { if } x=0\end{aligned}\)

1 \(\lim _{x \rightarrow 0} f(x)=3\)
2 f has removable discontinuity at \(x=0\)
3 \(f\) is continuous at \(x=0\)
4 f has irremovable discontinuity at \(x=0\)
Limits, Continuity and Differentiability

79893 If
\(\begin{aligned} & f(x)=\left[\tan \left(\frac{\pi}{4}+\mathbf{x}\right)\right]^{\frac{1}{x}} \text { if } x \neq 0 \\ & =\mathbf{k} \quad \text { if } \mathbf{x}=\mathbf{0}, \\ & \end{aligned}\)
is continuous at \(x=0\) then \(k=\)

1 e
2 \(\sqrt{\mathrm{e}}\)
3 \(\mathrm{e}^{4}\)
4 \(\mathrm{e}^{2}\)
Limits, Continuity and Differentiability

79890 If \(\begin{aligned} f(x) & =\frac{4 \sin \pi x}{5 x}, \text { for } x \neq 0 \\ =2 k, & \text { for } x=0\end{aligned}\)
is continuous at \(x=0\), then the value of \(k\) is

1 \(\frac{4 \pi}{5}\)
2 \(\frac{\pi}{5}\)
3 \(\frac{2 \pi}{5}\)
4 \(\frac{\pi}{10}\)
Limits, Continuity and Differentiability

79891 If \(f(x)=\frac{1-\sin x+\cos x}{1+\sin x+\cos x}\), for \(x \neq \pi\) is
continuous at \(\mathrm{x}=\pi\), then \(\mathrm{f}(\pi)=\)

1 -1
2 2
3 0
4 1
Limits, Continuity and Differentiability

79892 If
\(\begin{aligned} f(x) & =\frac{\left(\mathrm{e}^{3 x}-1\right) \sin x^0}{x^2}, & & \text { if } x \neq 0 \\ & =\frac{\pi}{60}, & & \text { if } x=0\end{aligned}\)

1 \(\lim _{x \rightarrow 0} f(x)=3\)
2 f has removable discontinuity at \(x=0\)
3 \(f\) is continuous at \(x=0\)
4 f has irremovable discontinuity at \(x=0\)
Limits, Continuity and Differentiability

79893 If
\(\begin{aligned} & f(x)=\left[\tan \left(\frac{\pi}{4}+\mathbf{x}\right)\right]^{\frac{1}{x}} \text { if } x \neq 0 \\ & =\mathbf{k} \quad \text { if } \mathbf{x}=\mathbf{0}, \\ & \end{aligned}\)
is continuous at \(x=0\) then \(k=\)

1 e
2 \(\sqrt{\mathrm{e}}\)
3 \(\mathrm{e}^{4}\)
4 \(\mathrm{e}^{2}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

79890 If \(\begin{aligned} f(x) & =\frac{4 \sin \pi x}{5 x}, \text { for } x \neq 0 \\ =2 k, & \text { for } x=0\end{aligned}\)
is continuous at \(x=0\), then the value of \(k\) is

1 \(\frac{4 \pi}{5}\)
2 \(\frac{\pi}{5}\)
3 \(\frac{2 \pi}{5}\)
4 \(\frac{\pi}{10}\)
Limits, Continuity and Differentiability

79891 If \(f(x)=\frac{1-\sin x+\cos x}{1+\sin x+\cos x}\), for \(x \neq \pi\) is
continuous at \(\mathrm{x}=\pi\), then \(\mathrm{f}(\pi)=\)

1 -1
2 2
3 0
4 1
Limits, Continuity and Differentiability

79892 If
\(\begin{aligned} f(x) & =\frac{\left(\mathrm{e}^{3 x}-1\right) \sin x^0}{x^2}, & & \text { if } x \neq 0 \\ & =\frac{\pi}{60}, & & \text { if } x=0\end{aligned}\)

1 \(\lim _{x \rightarrow 0} f(x)=3\)
2 f has removable discontinuity at \(x=0\)
3 \(f\) is continuous at \(x=0\)
4 f has irremovable discontinuity at \(x=0\)
Limits, Continuity and Differentiability

79893 If
\(\begin{aligned} & f(x)=\left[\tan \left(\frac{\pi}{4}+\mathbf{x}\right)\right]^{\frac{1}{x}} \text { if } x \neq 0 \\ & =\mathbf{k} \quad \text { if } \mathbf{x}=\mathbf{0}, \\ & \end{aligned}\)
is continuous at \(x=0\) then \(k=\)

1 e
2 \(\sqrt{\mathrm{e}}\)
3 \(\mathrm{e}^{4}\)
4 \(\mathrm{e}^{2}\)