79895
If the function
\(\begin{array}{cc}f(x)=\frac{1-\sin 2 x+\cos 2 x}{1+\sin 2 x+\cos 2 x}, & \text { if } x \neq \frac{\pi}{2} \\ f(x)=k, & \text { if } x=\frac{\pi}{2}\end{array}\)
is continuous at \(\mathrm{x}=\frac{\boldsymbol{\pi}}{\boldsymbol{2}}\), then \(\mathrm{k}=\)
79895
If the function
\(\begin{array}{cc}f(x)=\frac{1-\sin 2 x+\cos 2 x}{1+\sin 2 x+\cos 2 x}, & \text { if } x \neq \frac{\pi}{2} \\ f(x)=k, & \text { if } x=\frac{\pi}{2}\end{array}\)
is continuous at \(\mathrm{x}=\frac{\boldsymbol{\pi}}{\boldsymbol{2}}\), then \(\mathrm{k}=\)
79895
If the function
\(\begin{array}{cc}f(x)=\frac{1-\sin 2 x+\cos 2 x}{1+\sin 2 x+\cos 2 x}, & \text { if } x \neq \frac{\pi}{2} \\ f(x)=k, & \text { if } x=\frac{\pi}{2}\end{array}\)
is continuous at \(\mathrm{x}=\frac{\boldsymbol{\pi}}{\boldsymbol{2}}\), then \(\mathrm{k}=\)
79895
If the function
\(\begin{array}{cc}f(x)=\frac{1-\sin 2 x+\cos 2 x}{1+\sin 2 x+\cos 2 x}, & \text { if } x \neq \frac{\pi}{2} \\ f(x)=k, & \text { if } x=\frac{\pi}{2}\end{array}\)
is continuous at \(\mathrm{x}=\frac{\boldsymbol{\pi}}{\boldsymbol{2}}\), then \(\mathrm{k}=\)
79895
If the function
\(\begin{array}{cc}f(x)=\frac{1-\sin 2 x+\cos 2 x}{1+\sin 2 x+\cos 2 x}, & \text { if } x \neq \frac{\pi}{2} \\ f(x)=k, & \text { if } x=\frac{\pi}{2}\end{array}\)
is continuous at \(\mathrm{x}=\frac{\boldsymbol{\pi}}{\boldsymbol{2}}\), then \(\mathrm{k}=\)