Differentiability and Continuity of Function
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

79899 If the function \(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\left(1+3 \tan ^2 x\right)^{\frac{\cot ^2 x}{4}}, & & \mathbf{x} \neq 0 \\ & =\mathbf{k}, & & x=0\end{aligned}\)
is continuous at \(\mathrm{x}=0\), then \(\mathrm{k}=\)

1 \(\mathrm{e}^{\frac{3}{4}}\)
2 \(\mathrm{e}^{4}\)
3 \(\mathrm{e}^{\frac{4}{2}}\)
4 \(\mathrm{e}^{2}\)
Limits, Continuity and Differentiability

79901 If \(f(x)\) is continuous at \(x=3\), where
\(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\mathbf{a x}+1, & & \text { for } \mathbf{x} \leq \mathbf{3} \\ & =\mathbf{b x}+3, & & \text { for } \mathbf{x}>3\end{aligned}\)
then

1 \(\mathrm{a}-\mathrm{b}=\frac{2}{3}\)
2 \(\mathrm{a}+\mathrm{b}=\frac{-2}{3}\)
3 \(\mathrm{a}-\mathrm{b}=\frac{-2}{3}\)
4 \(a+b=\frac{2}{3}\)
Limits, Continuity and Differentiability

79902 If the function
\(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\frac{\left(\mathrm{e}^{\mathrm{kx}}-1\right) \tan \mathrm{kx}}{4 \mathrm{x}^2}, & & \mathbf{x} \neq 0 \\ & =16, & & \mathbf{x}=0\end{aligned}\)
is continuous at \(x=0\), then \(k=\)

1 \(\pm \frac{1}{8}\)
2 \(\pm 2\)
3 \(\pm 8\)
4 \(\pm 4\)
Limits, Continuity and Differentiability

79905 Which of the following function is not continuous at \(x=0\) ?

1 \(\begin{aligned} f(x) & =\sin x-\cos x, & & x \neq 0 \\ & =-1, & & x=0\end{aligned}\)
2 \(\begin{aligned} \mathrm{f}(\mathrm{x}) & =(1+2 \mathrm{x})^{1 / \mathrm{x}}, & & \mathrm{x} \neq 0 \\ & =\mathrm{e}^2, & & \mathrm{x}=0\end{aligned}\)
3 \(\begin{aligned} \mathrm{f}(\mathrm{x}) & =\frac{\mathrm{e}^{1 / x}-1}{\mathrm{e}^{1 / x}+1}, & & \mathrm{x} \neq 0 \\ & =-1, & & \mathrm{x}=0\end{aligned}\)
4 \(\begin{aligned} f(x) & =\frac{e^{5 x}-e^{2 x}}{\sin 3 x}, & & x \neq 0 \\ & =1, & & x=0\end{aligned}\)
Limits, Continuity and Differentiability

79899 If the function \(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\left(1+3 \tan ^2 x\right)^{\frac{\cot ^2 x}{4}}, & & \mathbf{x} \neq 0 \\ & =\mathbf{k}, & & x=0\end{aligned}\)
is continuous at \(\mathrm{x}=0\), then \(\mathrm{k}=\)

1 \(\mathrm{e}^{\frac{3}{4}}\)
2 \(\mathrm{e}^{4}\)
3 \(\mathrm{e}^{\frac{4}{2}}\)
4 \(\mathrm{e}^{2}\)
Limits, Continuity and Differentiability

79901 If \(f(x)\) is continuous at \(x=3\), where
\(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\mathbf{a x}+1, & & \text { for } \mathbf{x} \leq \mathbf{3} \\ & =\mathbf{b x}+3, & & \text { for } \mathbf{x}>3\end{aligned}\)
then

1 \(\mathrm{a}-\mathrm{b}=\frac{2}{3}\)
2 \(\mathrm{a}+\mathrm{b}=\frac{-2}{3}\)
3 \(\mathrm{a}-\mathrm{b}=\frac{-2}{3}\)
4 \(a+b=\frac{2}{3}\)
Limits, Continuity and Differentiability

79902 If the function
\(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\frac{\left(\mathrm{e}^{\mathrm{kx}}-1\right) \tan \mathrm{kx}}{4 \mathrm{x}^2}, & & \mathbf{x} \neq 0 \\ & =16, & & \mathbf{x}=0\end{aligned}\)
is continuous at \(x=0\), then \(k=\)

1 \(\pm \frac{1}{8}\)
2 \(\pm 2\)
3 \(\pm 8\)
4 \(\pm 4\)
Limits, Continuity and Differentiability

79905 Which of the following function is not continuous at \(x=0\) ?

1 \(\begin{aligned} f(x) & =\sin x-\cos x, & & x \neq 0 \\ & =-1, & & x=0\end{aligned}\)
2 \(\begin{aligned} \mathrm{f}(\mathrm{x}) & =(1+2 \mathrm{x})^{1 / \mathrm{x}}, & & \mathrm{x} \neq 0 \\ & =\mathrm{e}^2, & & \mathrm{x}=0\end{aligned}\)
3 \(\begin{aligned} \mathrm{f}(\mathrm{x}) & =\frac{\mathrm{e}^{1 / x}-1}{\mathrm{e}^{1 / x}+1}, & & \mathrm{x} \neq 0 \\ & =-1, & & \mathrm{x}=0\end{aligned}\)
4 \(\begin{aligned} f(x) & =\frac{e^{5 x}-e^{2 x}}{\sin 3 x}, & & x \neq 0 \\ & =1, & & x=0\end{aligned}\)
Limits, Continuity and Differentiability

79899 If the function \(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\left(1+3 \tan ^2 x\right)^{\frac{\cot ^2 x}{4}}, & & \mathbf{x} \neq 0 \\ & =\mathbf{k}, & & x=0\end{aligned}\)
is continuous at \(\mathrm{x}=0\), then \(\mathrm{k}=\)

1 \(\mathrm{e}^{\frac{3}{4}}\)
2 \(\mathrm{e}^{4}\)
3 \(\mathrm{e}^{\frac{4}{2}}\)
4 \(\mathrm{e}^{2}\)
Limits, Continuity and Differentiability

79901 If \(f(x)\) is continuous at \(x=3\), where
\(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\mathbf{a x}+1, & & \text { for } \mathbf{x} \leq \mathbf{3} \\ & =\mathbf{b x}+3, & & \text { for } \mathbf{x}>3\end{aligned}\)
then

1 \(\mathrm{a}-\mathrm{b}=\frac{2}{3}\)
2 \(\mathrm{a}+\mathrm{b}=\frac{-2}{3}\)
3 \(\mathrm{a}-\mathrm{b}=\frac{-2}{3}\)
4 \(a+b=\frac{2}{3}\)
Limits, Continuity and Differentiability

79902 If the function
\(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\frac{\left(\mathrm{e}^{\mathrm{kx}}-1\right) \tan \mathrm{kx}}{4 \mathrm{x}^2}, & & \mathbf{x} \neq 0 \\ & =16, & & \mathbf{x}=0\end{aligned}\)
is continuous at \(x=0\), then \(k=\)

1 \(\pm \frac{1}{8}\)
2 \(\pm 2\)
3 \(\pm 8\)
4 \(\pm 4\)
Limits, Continuity and Differentiability

79905 Which of the following function is not continuous at \(x=0\) ?

1 \(\begin{aligned} f(x) & =\sin x-\cos x, & & x \neq 0 \\ & =-1, & & x=0\end{aligned}\)
2 \(\begin{aligned} \mathrm{f}(\mathrm{x}) & =(1+2 \mathrm{x})^{1 / \mathrm{x}}, & & \mathrm{x} \neq 0 \\ & =\mathrm{e}^2, & & \mathrm{x}=0\end{aligned}\)
3 \(\begin{aligned} \mathrm{f}(\mathrm{x}) & =\frac{\mathrm{e}^{1 / x}-1}{\mathrm{e}^{1 / x}+1}, & & \mathrm{x} \neq 0 \\ & =-1, & & \mathrm{x}=0\end{aligned}\)
4 \(\begin{aligned} f(x) & =\frac{e^{5 x}-e^{2 x}}{\sin 3 x}, & & x \neq 0 \\ & =1, & & x=0\end{aligned}\)
Limits, Continuity and Differentiability

79899 If the function \(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\left(1+3 \tan ^2 x\right)^{\frac{\cot ^2 x}{4}}, & & \mathbf{x} \neq 0 \\ & =\mathbf{k}, & & x=0\end{aligned}\)
is continuous at \(\mathrm{x}=0\), then \(\mathrm{k}=\)

1 \(\mathrm{e}^{\frac{3}{4}}\)
2 \(\mathrm{e}^{4}\)
3 \(\mathrm{e}^{\frac{4}{2}}\)
4 \(\mathrm{e}^{2}\)
Limits, Continuity and Differentiability

79901 If \(f(x)\) is continuous at \(x=3\), where
\(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\mathbf{a x}+1, & & \text { for } \mathbf{x} \leq \mathbf{3} \\ & =\mathbf{b x}+3, & & \text { for } \mathbf{x}>3\end{aligned}\)
then

1 \(\mathrm{a}-\mathrm{b}=\frac{2}{3}\)
2 \(\mathrm{a}+\mathrm{b}=\frac{-2}{3}\)
3 \(\mathrm{a}-\mathrm{b}=\frac{-2}{3}\)
4 \(a+b=\frac{2}{3}\)
Limits, Continuity and Differentiability

79902 If the function
\(\begin{aligned} \mathbf{f}(\mathbf{x}) & =\frac{\left(\mathrm{e}^{\mathrm{kx}}-1\right) \tan \mathrm{kx}}{4 \mathrm{x}^2}, & & \mathbf{x} \neq 0 \\ & =16, & & \mathbf{x}=0\end{aligned}\)
is continuous at \(x=0\), then \(k=\)

1 \(\pm \frac{1}{8}\)
2 \(\pm 2\)
3 \(\pm 8\)
4 \(\pm 4\)
Limits, Continuity and Differentiability

79905 Which of the following function is not continuous at \(x=0\) ?

1 \(\begin{aligned} f(x) & =\sin x-\cos x, & & x \neq 0 \\ & =-1, & & x=0\end{aligned}\)
2 \(\begin{aligned} \mathrm{f}(\mathrm{x}) & =(1+2 \mathrm{x})^{1 / \mathrm{x}}, & & \mathrm{x} \neq 0 \\ & =\mathrm{e}^2, & & \mathrm{x}=0\end{aligned}\)
3 \(\begin{aligned} \mathrm{f}(\mathrm{x}) & =\frac{\mathrm{e}^{1 / x}-1}{\mathrm{e}^{1 / x}+1}, & & \mathrm{x} \neq 0 \\ & =-1, & & \mathrm{x}=0\end{aligned}\)
4 \(\begin{aligned} f(x) & =\frac{e^{5 x}-e^{2 x}}{\sin 3 x}, & & x \neq 0 \\ & =1, & & x=0\end{aligned}\)