79890 If f(x)=4sinπx5x, for x≠0=2k, for x=0is continuous at x=0, then the value of k is
(C) : Given, f(x)=4sinπx5x,x≠0f(x)=2k, at x=0f(0)=2kSince, f(x) is continuous at x=0,limx→0f(x)=f(0)limx→04sinπx5x=2klimx→0(4sinπxπx)⋅π5=2kOr(1). 4π5=2kk=2π5
79891 If f(x)=1−sinx+cosx1+sinx+cosx, for x≠π iscontinuous at x=π, then f(π)=
(A) : Given,f(x) is continuous at x=πf(π)=limx→πf(x)=limx→π1−sinx+cosx1+sinx+cosxApply L-Hospital rule,=limx→π−cosx−sinxcosx−sinx=−cosπ−sinπcosπ−sinπ=−(−1)−0−1−0=1−1=−1
79892 Iff(x)=(e3x−1)sinx0x2, if x≠0=π60, if x=0
(C) : Given, f(x)=π60,x=0f(0)=π60limx→0f(x)=limx→0(e3x−1)sinx0x2Dividing numerator and denominator by x2, we get=limx→0(e3x−13x×3)sin(πx180)c(πx180)c×(π180)(x2x2)limx→0f(x)=(3)(1)(π180)=π60{∵limx→0ex−1x=1}∵ at x=0,f(0)=limx→0f(x)Hence, f(x) is continuous at x=0.
79893 Iff(x)=[tan(π4+x)]1x if x≠0=k if x=0,is continuous at x=0 then k=
(D) : Given, f(x)=[tan(π4+x)]1x if x≠0=k if x=0Given f(x) is continuous at x=0∴limx→0f(x)=f(0)limx→0[tan(π4+x)]1x=klimx→0(1+tanx1−tanx)1x=k[∵limx→0[f(x)]g(x)=elimx→0[f(x)−1]g(x)]∴elimx→0(1+tanx1−tanx−1)1x=ke2limx→0tanxx(1−tan0∘)=ke2(11−0)=kk=e2