79004 If A=[111123134],B=[71622],X=[xyz]and AX=B, then z is equal to
(D) : It is given that, AX=B⇒[111123134][xyz]=[71622]This will have a solution if A−1 exists, i.e., |A|≠0|A|=1(8−9)−1(4−3)+1(3−2)⇒−1−1+1=−1≠0Hence, A−1 exists.Now, X=A−1 BX=[111123134]−1[71622]Co-factor matrix of A=[−1−1−1−13−21−21]∴adjA=[−1−11−13−21−21]We know that,A−1=adjA|A|=[11−11−32−12−1]X=A−1 B=[11−11−32−12−1][71622]⇒[xyz]=[7+16−227−48+44−7+32−22]=[133]We get, z=3
79005 If [−253−1][xy]=[1234][3−1], then (x,y) is
(D) : We have,[−253−1][xy]=[1234][3−1][−2x+5y3x−y]=[15]Comparing these value, we get -−2x+5y=1,3x−y=5y=3x−5−2x+5(3x−5)=113x=26⇒x=2Substituting x=2, we get- y=6−5=1Hence, (x,y)=(2,1)
79006 If f(x)=|a−10axa1ax2axa|, then f(2x)−f(x) equals
(C) : We have,f(x)=|a−10axa1ax2axa|⇒f(x)=a|1−10xa−1x2axa|f(x)=a[1(a2+ax)+1(ax+x2)+0]=a(a2+2ax+x2)f(x)=a(a+x)2∴f(2x)=a(a+2x)2So, f(2x)−f(x)=a[(a+2x)2−(a+x)2]=a[a2+4x2+4ax−a2−x2−2ax]=a(3x2+2ax)=ax(2a+3x)
79007 If p+q+r=0=a+b+c, then the value of thedeterminant |paqbrcqcrapbrbpcqa| is
(A) : Here,Let, Δ=|paqbrcqcrapbrbpcqa|Δ=pa(a2rq−p2cb)−qb(q2ca−b2pr)+rc(qpc2−r2ab)Δ= prqa 3−p3abc−q3abc+pqrb3+pqrc3−r3abc=pqr(a3+b3+c3)−abc(p3+q3+r3)∵a+b+c=0=p+q+r (given)∴a3+b3+c3=3abcand p3+q3+r3=3pqrSo, Δ=pqr(3abc)−abc(3pqr)Δ=0