Determinants and their Properties
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

79008 If \(a \neq b \neq c\), then the value of \(x\) satisfying the
equation \(\left|\begin{array}{ccc}0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0\end{array}\right|=0\) is

1 a
2 \(\mathrm{b}\)
3 c
4 0
Matrix and Determinant

79009 If \(a, b, c\) are non-zero distinct real numbers,
then \(\left|\begin{array}{lll}\text { bc } & \text { ca } & a b \\ \text { ca } & \text { ab } & b c \\ \text { ab } & \text { bc } & c a\end{array}\right|\) vanishes, when

1 \(1 / \mathrm{a}+1 / \mathrm{b}+1 / \mathrm{c}=0\)
2 \(1 / \mathrm{a}-1 / \mathrm{b}-1 / \mathrm{c}=0\)
3 \(1 / \mathrm{b}+1 / \mathrm{c}-1 / \mathrm{a}=0\)
4 \(1 / \mathrm{b}-1 / \mathrm{c}-1 / \mathrm{a}=0\)
Matrix and Determinant

79010 \(\left|\begin{array}{ccc}1 & 1 & 1 \\ 4 & 3 & 2 \\ 4^{2} & 3^{2} & 2^{2}\end{array}\right|=\)

1 2
2 0
3 -2
4 1
Matrix and Determinant

79012 If \(B\) is non-singular matrix and \(A\) is a square matrix, then \(\operatorname{det}\left(B^{-1} A B\right)\) is equal to

1 \(\operatorname{det}\left(\mathrm{A}^{-1}\right)\)
2 \(\operatorname{det}\left(\mathrm{B}^{-1}\right)\)
3 \(\operatorname{det}(\mathrm{A})\)
4 \(\operatorname{det}(\mathrm{B})\)
Matrix and Determinant

79008 If \(a \neq b \neq c\), then the value of \(x\) satisfying the
equation \(\left|\begin{array}{ccc}0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0\end{array}\right|=0\) is

1 a
2 \(\mathrm{b}\)
3 c
4 0
Matrix and Determinant

79009 If \(a, b, c\) are non-zero distinct real numbers,
then \(\left|\begin{array}{lll}\text { bc } & \text { ca } & a b \\ \text { ca } & \text { ab } & b c \\ \text { ab } & \text { bc } & c a\end{array}\right|\) vanishes, when

1 \(1 / \mathrm{a}+1 / \mathrm{b}+1 / \mathrm{c}=0\)
2 \(1 / \mathrm{a}-1 / \mathrm{b}-1 / \mathrm{c}=0\)
3 \(1 / \mathrm{b}+1 / \mathrm{c}-1 / \mathrm{a}=0\)
4 \(1 / \mathrm{b}-1 / \mathrm{c}-1 / \mathrm{a}=0\)
Matrix and Determinant

79010 \(\left|\begin{array}{ccc}1 & 1 & 1 \\ 4 & 3 & 2 \\ 4^{2} & 3^{2} & 2^{2}\end{array}\right|=\)

1 2
2 0
3 -2
4 1
Matrix and Determinant

79012 If \(B\) is non-singular matrix and \(A\) is a square matrix, then \(\operatorname{det}\left(B^{-1} A B\right)\) is equal to

1 \(\operatorname{det}\left(\mathrm{A}^{-1}\right)\)
2 \(\operatorname{det}\left(\mathrm{B}^{-1}\right)\)
3 \(\operatorname{det}(\mathrm{A})\)
4 \(\operatorname{det}(\mathrm{B})\)
Matrix and Determinant

79008 If \(a \neq b \neq c\), then the value of \(x\) satisfying the
equation \(\left|\begin{array}{ccc}0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0\end{array}\right|=0\) is

1 a
2 \(\mathrm{b}\)
3 c
4 0
Matrix and Determinant

79009 If \(a, b, c\) are non-zero distinct real numbers,
then \(\left|\begin{array}{lll}\text { bc } & \text { ca } & a b \\ \text { ca } & \text { ab } & b c \\ \text { ab } & \text { bc } & c a\end{array}\right|\) vanishes, when

1 \(1 / \mathrm{a}+1 / \mathrm{b}+1 / \mathrm{c}=0\)
2 \(1 / \mathrm{a}-1 / \mathrm{b}-1 / \mathrm{c}=0\)
3 \(1 / \mathrm{b}+1 / \mathrm{c}-1 / \mathrm{a}=0\)
4 \(1 / \mathrm{b}-1 / \mathrm{c}-1 / \mathrm{a}=0\)
Matrix and Determinant

79010 \(\left|\begin{array}{ccc}1 & 1 & 1 \\ 4 & 3 & 2 \\ 4^{2} & 3^{2} & 2^{2}\end{array}\right|=\)

1 2
2 0
3 -2
4 1
Matrix and Determinant

79012 If \(B\) is non-singular matrix and \(A\) is a square matrix, then \(\operatorname{det}\left(B^{-1} A B\right)\) is equal to

1 \(\operatorname{det}\left(\mathrm{A}^{-1}\right)\)
2 \(\operatorname{det}\left(\mathrm{B}^{-1}\right)\)
3 \(\operatorname{det}(\mathrm{A})\)
4 \(\operatorname{det}(\mathrm{B})\)
Matrix and Determinant

79008 If \(a \neq b \neq c\), then the value of \(x\) satisfying the
equation \(\left|\begin{array}{ccc}0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0\end{array}\right|=0\) is

1 a
2 \(\mathrm{b}\)
3 c
4 0
Matrix and Determinant

79009 If \(a, b, c\) are non-zero distinct real numbers,
then \(\left|\begin{array}{lll}\text { bc } & \text { ca } & a b \\ \text { ca } & \text { ab } & b c \\ \text { ab } & \text { bc } & c a\end{array}\right|\) vanishes, when

1 \(1 / \mathrm{a}+1 / \mathrm{b}+1 / \mathrm{c}=0\)
2 \(1 / \mathrm{a}-1 / \mathrm{b}-1 / \mathrm{c}=0\)
3 \(1 / \mathrm{b}+1 / \mathrm{c}-1 / \mathrm{a}=0\)
4 \(1 / \mathrm{b}-1 / \mathrm{c}-1 / \mathrm{a}=0\)
Matrix and Determinant

79010 \(\left|\begin{array}{ccc}1 & 1 & 1 \\ 4 & 3 & 2 \\ 4^{2} & 3^{2} & 2^{2}\end{array}\right|=\)

1 2
2 0
3 -2
4 1
Matrix and Determinant

79012 If \(B\) is non-singular matrix and \(A\) is a square matrix, then \(\operatorname{det}\left(B^{-1} A B\right)\) is equal to

1 \(\operatorname{det}\left(\mathrm{A}^{-1}\right)\)
2 \(\operatorname{det}\left(\mathrm{B}^{-1}\right)\)
3 \(\operatorname{det}(\mathrm{A})\)
4 \(\operatorname{det}(\mathrm{B})\)