Determinants and their Properties
Matrix and Determinant

79004 If \(A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 4\end{array}\right], B=\left[\begin{array}{c}7 \\ 16 \\ 22\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\)
and \(\mathbf{A X}=\mathbf{B}\), then \(\mathrm{z}\) is equal to

1 1
2 -1
3 -3
4 3
Matrix and Determinant

79005 If \(\left[\begin{array}{cc}-2 & 5 \\ 3 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{c}3 \\ -1\end{array}\right]\), then \((x, y)\) is

1 \((1,2)\)
2 \((-1,2)\)
3 \((1,-2)\)
4 \((2,1)\)
Matrix and Determinant

79006 If \(f(x)=\left|\begin{array}{ccc}a & -1 & 0 \\ a x & a & 1 \\ a x^{2} & a x & a\end{array}\right|\), then \(f(2 x)-f(x)\) equals

1 \(a(2 a+3 x)\)
2 ax \((2 x+3 a)\)
3 \(a x(2 a+3 x)\)
4 \(x(2 a+3 x)\)
Matrix and Determinant

79007 If \(p+q+r=0=a+b+c\), then the value of the
determinant \(\left|\begin{array}{lll}p a & q b & \mathbf{r c} \\ \mathbf{q c} & \mathbf{r a} & \mathbf{p b} \\ \mathbf{r b} & \mathbf{p c} & \mathbf{q a}\end{array}\right|\) is

1 0
2 \(\mathrm{pa}+\mathrm{qb}+\mathrm{rc}\)
3 1
4 -1
Matrix and Determinant

79004 If \(A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 4\end{array}\right], B=\left[\begin{array}{c}7 \\ 16 \\ 22\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\)
and \(\mathbf{A X}=\mathbf{B}\), then \(\mathrm{z}\) is equal to

1 1
2 -1
3 -3
4 3
Matrix and Determinant

79005 If \(\left[\begin{array}{cc}-2 & 5 \\ 3 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{c}3 \\ -1\end{array}\right]\), then \((x, y)\) is

1 \((1,2)\)
2 \((-1,2)\)
3 \((1,-2)\)
4 \((2,1)\)
Matrix and Determinant

79006 If \(f(x)=\left|\begin{array}{ccc}a & -1 & 0 \\ a x & a & 1 \\ a x^{2} & a x & a\end{array}\right|\), then \(f(2 x)-f(x)\) equals

1 \(a(2 a+3 x)\)
2 ax \((2 x+3 a)\)
3 \(a x(2 a+3 x)\)
4 \(x(2 a+3 x)\)
Matrix and Determinant

79007 If \(p+q+r=0=a+b+c\), then the value of the
determinant \(\left|\begin{array}{lll}p a & q b & \mathbf{r c} \\ \mathbf{q c} & \mathbf{r a} & \mathbf{p b} \\ \mathbf{r b} & \mathbf{p c} & \mathbf{q a}\end{array}\right|\) is

1 0
2 \(\mathrm{pa}+\mathrm{qb}+\mathrm{rc}\)
3 1
4 -1
Matrix and Determinant

79004 If \(A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 4\end{array}\right], B=\left[\begin{array}{c}7 \\ 16 \\ 22\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\)
and \(\mathbf{A X}=\mathbf{B}\), then \(\mathrm{z}\) is equal to

1 1
2 -1
3 -3
4 3
Matrix and Determinant

79005 If \(\left[\begin{array}{cc}-2 & 5 \\ 3 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{c}3 \\ -1\end{array}\right]\), then \((x, y)\) is

1 \((1,2)\)
2 \((-1,2)\)
3 \((1,-2)\)
4 \((2,1)\)
Matrix and Determinant

79006 If \(f(x)=\left|\begin{array}{ccc}a & -1 & 0 \\ a x & a & 1 \\ a x^{2} & a x & a\end{array}\right|\), then \(f(2 x)-f(x)\) equals

1 \(a(2 a+3 x)\)
2 ax \((2 x+3 a)\)
3 \(a x(2 a+3 x)\)
4 \(x(2 a+3 x)\)
Matrix and Determinant

79007 If \(p+q+r=0=a+b+c\), then the value of the
determinant \(\left|\begin{array}{lll}p a & q b & \mathbf{r c} \\ \mathbf{q c} & \mathbf{r a} & \mathbf{p b} \\ \mathbf{r b} & \mathbf{p c} & \mathbf{q a}\end{array}\right|\) is

1 0
2 \(\mathrm{pa}+\mathrm{qb}+\mathrm{rc}\)
3 1
4 -1
Matrix and Determinant

79004 If \(A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 4\end{array}\right], B=\left[\begin{array}{c}7 \\ 16 \\ 22\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\)
and \(\mathbf{A X}=\mathbf{B}\), then \(\mathrm{z}\) is equal to

1 1
2 -1
3 -3
4 3
Matrix and Determinant

79005 If \(\left[\begin{array}{cc}-2 & 5 \\ 3 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{c}3 \\ -1\end{array}\right]\), then \((x, y)\) is

1 \((1,2)\)
2 \((-1,2)\)
3 \((1,-2)\)
4 \((2,1)\)
Matrix and Determinant

79006 If \(f(x)=\left|\begin{array}{ccc}a & -1 & 0 \\ a x & a & 1 \\ a x^{2} & a x & a\end{array}\right|\), then \(f(2 x)-f(x)\) equals

1 \(a(2 a+3 x)\)
2 ax \((2 x+3 a)\)
3 \(a x(2 a+3 x)\)
4 \(x(2 a+3 x)\)
Matrix and Determinant

79007 If \(p+q+r=0=a+b+c\), then the value of the
determinant \(\left|\begin{array}{lll}p a & q b & \mathbf{r c} \\ \mathbf{q c} & \mathbf{r a} & \mathbf{p b} \\ \mathbf{r b} & \mathbf{p c} & \mathbf{q a}\end{array}\right|\) is

1 0
2 \(\mathrm{pa}+\mathrm{qb}+\mathrm{rc}\)
3 1
4 -1