Solution of System of Linear Equation Using Matrix
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

78972 If A=[678131214], then A1=

1 180[112017640272011]
2 180[116720402017211]
3 180[112017640272011]
4 180[112017640272011]
Matrix and Determinant

78973 If A=[012220],B=[011011] and M=AB, then find M1.

1 [16131313]
2 [16131316]
3 [13161613]
4 [13161616]
Matrix and Determinant

78975 If M(α)=[cosαsinα0sinαcosα0001];
M(β)=[cosβ0sinβ010sinβ0cosβ] then [M(α)M(β)]1
is equal to-

1 M(β)M(α)
2 M(α)M(β)
3 M(β)M(α)
4 M(β)M(α)
Matrix and Determinant

78972 If A=[678131214], then A1=

1 180[112017640272011]
2 180[116720402017211]
3 180[112017640272011]
4 180[112017640272011]
Matrix and Determinant

78973 If A=[012220],B=[011011] and M=AB, then find M1.

1 [16131313]
2 [16131316]
3 [13161613]
4 [13161616]
Matrix and Determinant

78974 Inverse matrix of [2342]

1 18[2342]
2 18[2432]
3 18[2342]
4 [2342]
Matrix and Determinant

78975 If M(α)=[cosαsinα0sinαcosα0001];
M(β)=[cosβ0sinβ010sinβ0cosβ] then [M(α)M(β)]1
is equal to-

1 M(β)M(α)
2 M(α)M(β)
3 M(β)M(α)
4 M(β)M(α)
Matrix and Determinant

78972 If A=[678131214], then A1=

1 180[112017640272011]
2 180[116720402017211]
3 180[112017640272011]
4 180[112017640272011]
Matrix and Determinant

78973 If A=[012220],B=[011011] and M=AB, then find M1.

1 [16131313]
2 [16131316]
3 [13161613]
4 [13161616]
Matrix and Determinant

78974 Inverse matrix of [2342]

1 18[2342]
2 18[2432]
3 18[2342]
4 [2342]
Matrix and Determinant

78975 If M(α)=[cosαsinα0sinαcosα0001];
M(β)=[cosβ0sinβ010sinβ0cosβ] then [M(α)M(β)]1
is equal to-

1 M(β)M(α)
2 M(α)M(β)
3 M(β)M(α)
4 M(β)M(α)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

78972 If A=[678131214], then A1=

1 180[112017640272011]
2 180[116720402017211]
3 180[112017640272011]
4 180[112017640272011]
Matrix and Determinant

78973 If A=[012220],B=[011011] and M=AB, then find M1.

1 [16131313]
2 [16131316]
3 [13161613]
4 [13161616]
Matrix and Determinant

78974 Inverse matrix of [2342]

1 18[2342]
2 18[2432]
3 18[2342]
4 [2342]
Matrix and Determinant

78975 If M(α)=[cosαsinα0sinαcosα0001];
M(β)=[cosβ0sinβ010sinβ0cosβ] then [M(α)M(β)]1
is equal to-

1 M(β)M(α)
2 M(α)M(β)
3 M(β)M(α)
4 M(β)M(α)