78972 If A=[6−781−3121−4], then A−1=
(A) : We have,A=[6−781−3121−4]Here, |A|=6(12−1)+7(−4−2)+8(1+6)=80≠0∵|A|≠0⇒A−1 exists.Now, adjA=[11−20176−4027−20−11]We know that,A−1=1|A|(adjA)A−1=180[11−20176−4027−20−11]
78973 If A=[0−122−20],B=[011011] and M=AB, then find M−1.
(A) : We have,A=[0−122−20],B=[011011]It is given here, M=ABM=[0−122−20][011011]=[12−22]Here, |M|=6, and adj M=[1−222]Now, M−1=16[1−222]M−1=[1/6−1/31/31/3]
78974 Inverse matrix of [2−3−42]
(A) : Let the given matrix be Ai.e., A=[2−3−42]Here, |A|=−8And adjA=[2432]T=[2342]∴A−1=1| A| adj AA−1=−18[2342]
78975 If M(α)=[cosα−sinα0sinαcosα0001];M(β)=[cosβ0sinβ010−sinβ0cosβ] then [M(α)M(β)]−1is equal to-
(C) : According to given summation,[M(α)M(β)]−1=M(β)−1M(α)−1]Now M(α)−1=[cosαsinα0−sinαcosα0001]=[cos(−α)−sin(−α)0sin(−α)cos(−α)0001]=M(−α)M(β)−1=[cosβ0−sinβ010sinβ0cosβ]=[cos(−β)0sin(−β)010−sin(−β)0cos(−β)]=M(−β)[M(α)M(β)]−1=M(−β)M(−α)