Solution of System of Linear Equation Using Matrix
Matrix and Determinant

78967 If the product of the matrix \(B=\)
\(\left[\begin{array}{ccc}2 & 6 & 4 \\ 1 & 0 & 1 \\ -1 & 1 & -1\end{array}\right]\) with a matrix \(A\) has the inverse
\(C=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 1 & 1 & 3 \\ 2 & 0 & 2\end{array}\right]\), then \(A^{-1}\) equals

1 \(\left[\begin{array}{ccc}-3 & -5 & 5 \\ 0 & 9 & 14 \\ 2 & 2 & 9\end{array}\right]\)
2 \(\left[\begin{array}{ccc}-3 & 5 & 5 \\ 0 & 0 & 9 \\ 2 & 14 & 16\end{array}\right]\)
3 \(\left[\begin{array}{ccc}-3 & -5 & -5 \\ 0 & 0 & 2 \\ 2 & 14 & 6\end{array}\right]\)
4 \(\left[\begin{array}{ccc}-3 & -5 & -5 \\ 0 & 9 & 2 \\ 2 & 14 & 6\end{array}\right]\)
Matrix and Determinant

78968 If \(A=\left[\begin{array}{ll}2 & -3 \\ 5 & -7\end{array}\right]\), then \(A+A^{-1}=\)

1 \(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\)
2 \(\left[\begin{array}{cc}-5 & 0 \\ 0 & -5\end{array}\right]\)
3 \(\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]\)
4 \(\left[\begin{array}{cc}4 & 0 \\ 0 & -5\end{array}\right]\)
Matrix and Determinant

78969 If \(A^{2}-A+I=0\), then the inverse of \(A\) is

1 \(\mathrm{I}-\mathrm{A}\)
2 \(\mathrm{A}-\mathrm{I}\)
3 \(\mathrm{A}\)
4 \(\mathrm{A}+\mathrm{I}\)
Matrix and Determinant

78970 If \(A=\left[\begin{array}{ccc}2 & 3 & -5 \\ 1 & 4 & 9 \\ 0 & 7 & -2\end{array}\right]\), then apply \(C_{3} \rightarrow C_{3}+3 C_{2}\) to form a matrix \(B=\left[b_{i j}\right]\) and then find the value of \(a_{22}+b_{21}\) and \(a_{11} b_{11}+a_{22} b_{22}\) respectively.

1 20 and 5
2 5 and 20
3 5 and -4
4 10 and 15
Matrix and Determinant

78971 If \(\mathbf{A}=\left[\begin{array}{ccc}\sec \theta & \tan \theta & \mathbf{0} \\ \boldsymbol{\operatorname { t a n }} \theta & \boldsymbol{\operatorname { s e c }} \theta & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1}\end{array}\right]\), then

1 \(\mathrm{A}^{-1}\) exists
2 \(\mathrm{A}^{-1}\) does not exist
3 \(|\mathrm{A}|=2\)
4 none of these
Matrix and Determinant

78967 If the product of the matrix \(B=\)
\(\left[\begin{array}{ccc}2 & 6 & 4 \\ 1 & 0 & 1 \\ -1 & 1 & -1\end{array}\right]\) with a matrix \(A\) has the inverse
\(C=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 1 & 1 & 3 \\ 2 & 0 & 2\end{array}\right]\), then \(A^{-1}\) equals

1 \(\left[\begin{array}{ccc}-3 & -5 & 5 \\ 0 & 9 & 14 \\ 2 & 2 & 9\end{array}\right]\)
2 \(\left[\begin{array}{ccc}-3 & 5 & 5 \\ 0 & 0 & 9 \\ 2 & 14 & 16\end{array}\right]\)
3 \(\left[\begin{array}{ccc}-3 & -5 & -5 \\ 0 & 0 & 2 \\ 2 & 14 & 6\end{array}\right]\)
4 \(\left[\begin{array}{ccc}-3 & -5 & -5 \\ 0 & 9 & 2 \\ 2 & 14 & 6\end{array}\right]\)
Matrix and Determinant

78968 If \(A=\left[\begin{array}{ll}2 & -3 \\ 5 & -7\end{array}\right]\), then \(A+A^{-1}=\)

1 \(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\)
2 \(\left[\begin{array}{cc}-5 & 0 \\ 0 & -5\end{array}\right]\)
3 \(\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]\)
4 \(\left[\begin{array}{cc}4 & 0 \\ 0 & -5\end{array}\right]\)
Matrix and Determinant

78969 If \(A^{2}-A+I=0\), then the inverse of \(A\) is

1 \(\mathrm{I}-\mathrm{A}\)
2 \(\mathrm{A}-\mathrm{I}\)
3 \(\mathrm{A}\)
4 \(\mathrm{A}+\mathrm{I}\)
Matrix and Determinant

78970 If \(A=\left[\begin{array}{ccc}2 & 3 & -5 \\ 1 & 4 & 9 \\ 0 & 7 & -2\end{array}\right]\), then apply \(C_{3} \rightarrow C_{3}+3 C_{2}\) to form a matrix \(B=\left[b_{i j}\right]\) and then find the value of \(a_{22}+b_{21}\) and \(a_{11} b_{11}+a_{22} b_{22}\) respectively.

1 20 and 5
2 5 and 20
3 5 and -4
4 10 and 15
Matrix and Determinant

78971 If \(\mathbf{A}=\left[\begin{array}{ccc}\sec \theta & \tan \theta & \mathbf{0} \\ \boldsymbol{\operatorname { t a n }} \theta & \boldsymbol{\operatorname { s e c }} \theta & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1}\end{array}\right]\), then

1 \(\mathrm{A}^{-1}\) exists
2 \(\mathrm{A}^{-1}\) does not exist
3 \(|\mathrm{A}|=2\)
4 none of these
Matrix and Determinant

78967 If the product of the matrix \(B=\)
\(\left[\begin{array}{ccc}2 & 6 & 4 \\ 1 & 0 & 1 \\ -1 & 1 & -1\end{array}\right]\) with a matrix \(A\) has the inverse
\(C=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 1 & 1 & 3 \\ 2 & 0 & 2\end{array}\right]\), then \(A^{-1}\) equals

1 \(\left[\begin{array}{ccc}-3 & -5 & 5 \\ 0 & 9 & 14 \\ 2 & 2 & 9\end{array}\right]\)
2 \(\left[\begin{array}{ccc}-3 & 5 & 5 \\ 0 & 0 & 9 \\ 2 & 14 & 16\end{array}\right]\)
3 \(\left[\begin{array}{ccc}-3 & -5 & -5 \\ 0 & 0 & 2 \\ 2 & 14 & 6\end{array}\right]\)
4 \(\left[\begin{array}{ccc}-3 & -5 & -5 \\ 0 & 9 & 2 \\ 2 & 14 & 6\end{array}\right]\)
Matrix and Determinant

78968 If \(A=\left[\begin{array}{ll}2 & -3 \\ 5 & -7\end{array}\right]\), then \(A+A^{-1}=\)

1 \(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\)
2 \(\left[\begin{array}{cc}-5 & 0 \\ 0 & -5\end{array}\right]\)
3 \(\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]\)
4 \(\left[\begin{array}{cc}4 & 0 \\ 0 & -5\end{array}\right]\)
Matrix and Determinant

78969 If \(A^{2}-A+I=0\), then the inverse of \(A\) is

1 \(\mathrm{I}-\mathrm{A}\)
2 \(\mathrm{A}-\mathrm{I}\)
3 \(\mathrm{A}\)
4 \(\mathrm{A}+\mathrm{I}\)
Matrix and Determinant

78970 If \(A=\left[\begin{array}{ccc}2 & 3 & -5 \\ 1 & 4 & 9 \\ 0 & 7 & -2\end{array}\right]\), then apply \(C_{3} \rightarrow C_{3}+3 C_{2}\) to form a matrix \(B=\left[b_{i j}\right]\) and then find the value of \(a_{22}+b_{21}\) and \(a_{11} b_{11}+a_{22} b_{22}\) respectively.

1 20 and 5
2 5 and 20
3 5 and -4
4 10 and 15
Matrix and Determinant

78971 If \(\mathbf{A}=\left[\begin{array}{ccc}\sec \theta & \tan \theta & \mathbf{0} \\ \boldsymbol{\operatorname { t a n }} \theta & \boldsymbol{\operatorname { s e c }} \theta & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1}\end{array}\right]\), then

1 \(\mathrm{A}^{-1}\) exists
2 \(\mathrm{A}^{-1}\) does not exist
3 \(|\mathrm{A}|=2\)
4 none of these
Matrix and Determinant

78967 If the product of the matrix \(B=\)
\(\left[\begin{array}{ccc}2 & 6 & 4 \\ 1 & 0 & 1 \\ -1 & 1 & -1\end{array}\right]\) with a matrix \(A\) has the inverse
\(C=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 1 & 1 & 3 \\ 2 & 0 & 2\end{array}\right]\), then \(A^{-1}\) equals

1 \(\left[\begin{array}{ccc}-3 & -5 & 5 \\ 0 & 9 & 14 \\ 2 & 2 & 9\end{array}\right]\)
2 \(\left[\begin{array}{ccc}-3 & 5 & 5 \\ 0 & 0 & 9 \\ 2 & 14 & 16\end{array}\right]\)
3 \(\left[\begin{array}{ccc}-3 & -5 & -5 \\ 0 & 0 & 2 \\ 2 & 14 & 6\end{array}\right]\)
4 \(\left[\begin{array}{ccc}-3 & -5 & -5 \\ 0 & 9 & 2 \\ 2 & 14 & 6\end{array}\right]\)
Matrix and Determinant

78968 If \(A=\left[\begin{array}{ll}2 & -3 \\ 5 & -7\end{array}\right]\), then \(A+A^{-1}=\)

1 \(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\)
2 \(\left[\begin{array}{cc}-5 & 0 \\ 0 & -5\end{array}\right]\)
3 \(\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]\)
4 \(\left[\begin{array}{cc}4 & 0 \\ 0 & -5\end{array}\right]\)
Matrix and Determinant

78969 If \(A^{2}-A+I=0\), then the inverse of \(A\) is

1 \(\mathrm{I}-\mathrm{A}\)
2 \(\mathrm{A}-\mathrm{I}\)
3 \(\mathrm{A}\)
4 \(\mathrm{A}+\mathrm{I}\)
Matrix and Determinant

78970 If \(A=\left[\begin{array}{ccc}2 & 3 & -5 \\ 1 & 4 & 9 \\ 0 & 7 & -2\end{array}\right]\), then apply \(C_{3} \rightarrow C_{3}+3 C_{2}\) to form a matrix \(B=\left[b_{i j}\right]\) and then find the value of \(a_{22}+b_{21}\) and \(a_{11} b_{11}+a_{22} b_{22}\) respectively.

1 20 and 5
2 5 and 20
3 5 and -4
4 10 and 15
Matrix and Determinant

78971 If \(\mathbf{A}=\left[\begin{array}{ccc}\sec \theta & \tan \theta & \mathbf{0} \\ \boldsymbol{\operatorname { t a n }} \theta & \boldsymbol{\operatorname { s e c }} \theta & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1}\end{array}\right]\), then

1 \(\mathrm{A}^{-1}\) exists
2 \(\mathrm{A}^{-1}\) does not exist
3 \(|\mathrm{A}|=2\)
4 none of these
Matrix and Determinant

78967 If the product of the matrix \(B=\)
\(\left[\begin{array}{ccc}2 & 6 & 4 \\ 1 & 0 & 1 \\ -1 & 1 & -1\end{array}\right]\) with a matrix \(A\) has the inverse
\(C=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 1 & 1 & 3 \\ 2 & 0 & 2\end{array}\right]\), then \(A^{-1}\) equals

1 \(\left[\begin{array}{ccc}-3 & -5 & 5 \\ 0 & 9 & 14 \\ 2 & 2 & 9\end{array}\right]\)
2 \(\left[\begin{array}{ccc}-3 & 5 & 5 \\ 0 & 0 & 9 \\ 2 & 14 & 16\end{array}\right]\)
3 \(\left[\begin{array}{ccc}-3 & -5 & -5 \\ 0 & 0 & 2 \\ 2 & 14 & 6\end{array}\right]\)
4 \(\left[\begin{array}{ccc}-3 & -5 & -5 \\ 0 & 9 & 2 \\ 2 & 14 & 6\end{array}\right]\)
Matrix and Determinant

78968 If \(A=\left[\begin{array}{ll}2 & -3 \\ 5 & -7\end{array}\right]\), then \(A+A^{-1}=\)

1 \(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\)
2 \(\left[\begin{array}{cc}-5 & 0 \\ 0 & -5\end{array}\right]\)
3 \(\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]\)
4 \(\left[\begin{array}{cc}4 & 0 \\ 0 & -5\end{array}\right]\)
Matrix and Determinant

78969 If \(A^{2}-A+I=0\), then the inverse of \(A\) is

1 \(\mathrm{I}-\mathrm{A}\)
2 \(\mathrm{A}-\mathrm{I}\)
3 \(\mathrm{A}\)
4 \(\mathrm{A}+\mathrm{I}\)
Matrix and Determinant

78970 If \(A=\left[\begin{array}{ccc}2 & 3 & -5 \\ 1 & 4 & 9 \\ 0 & 7 & -2\end{array}\right]\), then apply \(C_{3} \rightarrow C_{3}+3 C_{2}\) to form a matrix \(B=\left[b_{i j}\right]\) and then find the value of \(a_{22}+b_{21}\) and \(a_{11} b_{11}+a_{22} b_{22}\) respectively.

1 20 and 5
2 5 and 20
3 5 and -4
4 10 and 15
Matrix and Determinant

78971 If \(\mathbf{A}=\left[\begin{array}{ccc}\sec \theta & \tan \theta & \mathbf{0} \\ \boldsymbol{\operatorname { t a n }} \theta & \boldsymbol{\operatorname { s e c }} \theta & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1}\end{array}\right]\), then

1 \(\mathrm{A}^{-1}\) exists
2 \(\mathrm{A}^{-1}\) does not exist
3 \(|\mathrm{A}|=2\)
4 none of these