78969
If \(A^{2}-A+I=0\), then the inverse of \(A\) is
1 \(\mathrm{I}-\mathrm{A}\)
2 \(\mathrm{A}-\mathrm{I}\)
3 \(\mathrm{A}\)
4 \(\mathrm{A}+\mathrm{I}\)
Explanation:
(A) : According to given summation, If \(A\) is any square matrix then, \(\begin{array}{ll} & \mathrm{AA}^{-1}=\mathrm{I} \text { and } \mathrm{A} \\ \text { Here, } & \mathrm{A}^{2}-\mathrm{A}+\mathrm{I}=0\end{array}\) \(A^{-1} A^{2}-A^{-1} A+A^{-1} I=0\) \(\left(A^{-1} A\right) A-\left(A^{-1} A\right)+A^{-1}=0\) \(I A-I+A^{-1}=0\) \(A-I+A^{-1}=0\) \(A^{-1}=I-A\)
COMEDK-2019
Matrix and Determinant
78970
If \(A=\left[\begin{array}{ccc}2 & 3 & -5 \\ 1 & 4 & 9 \\ 0 & 7 & -2\end{array}\right]\), then apply \(C_{3} \rightarrow C_{3}+3 C_{2}\) to form a matrix \(B=\left[b_{i j}\right]\) and then find the value of \(a_{22}+b_{21}\) and respectively.