Solution of System of Linear Equation Using Matrix
Matrix and Determinant

78967 If the product of the matrix \(B=\)
\(\left[\begin{array}{ccc}2 & 6 & 4 \\ 1 & 0 & 1 \\ -1 & 1 & -1\end{array}\right]\) with a matrix \(A\) has the inverse
\(C=\left[\begin{array}{ccc}-1 & 0 & 1 \\ 1 & 1 & 3 \\ 2 & 0 & 2\end{array}\right]\), then \(A^{-1}\) equals

1 \(\left[\begin{array}{ccc}-3 & -5 & 5 \\ 0 & 9 & 14 \\ 2 & 2 & 9\end{array}\right]\)
2 \(\left[\begin{array}{ccc}-3 & 5 & 5 \\ 0 & 0 & 9 \\ 2 & 14 & 16\end{array}\right]\)
3 \(\left[\begin{array}{ccc}-3 & -5 & -5 \\ 0 & 0 & 2 \\ 2 & 14 & 6\end{array}\right]\)
4 \(\left[\begin{array}{ccc}-3 & -5 & -5 \\ 0 & 9 & 2 \\ 2 & 14 & 6\end{array}\right]\)
Matrix and Determinant

78968 If \(A=\left[\begin{array}{ll}2 & -3 \\ 5 & -7\end{array}\right]\), then \(A+A^{-1}=\)

1 \(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\)
2 \(\left[\begin{array}{cc}-5 & 0 \\ 0 & -5\end{array}\right]\)
3 \(\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right]\)
4 \(\left[\begin{array}{cc}4 & 0 \\ 0 & -5\end{array}\right]\)
Matrix and Determinant

78969 If \(A^{2}-A+I=0\), then the inverse of \(A\) is

1 \(\mathrm{I}-\mathrm{A}\)
2 \(\mathrm{A}-\mathrm{I}\)
3 \(\mathrm{A}\)
4 \(\mathrm{A}+\mathrm{I}\)
Matrix and Determinant

78971 If A=[secθtanθ0\boldsymboltanθ\boldsymbolsecθ0001], then

1 A1 exists
2 A1 does not exist
3 |A|=2
4 none of these
Matrix and Determinant

78967 If the product of the matrix B=
[264101111] with a matrix A has the inverse
C=[101113202], then A1 equals

1 [3550914229]
2 [35500921416]
3 [3550022146]
4 [3550922146]
Matrix and Determinant

78968 If A=[2357], then A+A1=

1 [1001]
2 [5005]
3 [5005]
4 [4005]
Matrix and Determinant

78969 If A2A+I=0, then the inverse of A is

1 IA
2 AI
3 A
4 A+I
Matrix and Determinant

78970 If A=[235149072], then apply C3C3+3C2 to form a matrix B=[bij] and then find the value of a22+b21 and a11b11+a22b22 respectively.

1 20 and 5
2 5 and 20
3 5 and -4
4 10 and 15
Matrix and Determinant

78971 If A=[secθtanθ0\boldsymboltanθ\boldsymbolsecθ0001], then

1 A1 exists
2 A1 does not exist
3 |A|=2
4 none of these
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

78967 If the product of the matrix B=
[264101111] with a matrix A has the inverse
C=[101113202], then A1 equals

1 [3550914229]
2 [35500921416]
3 [3550022146]
4 [3550922146]
Matrix and Determinant

78968 If A=[2357], then A+A1=

1 [1001]
2 [5005]
3 [5005]
4 [4005]
Matrix and Determinant

78969 If A2A+I=0, then the inverse of A is

1 IA
2 AI
3 A
4 A+I
Matrix and Determinant

78970 If A=[235149072], then apply C3C3+3C2 to form a matrix B=[bij] and then find the value of a22+b21 and a11b11+a22b22 respectively.

1 20 and 5
2 5 and 20
3 5 and -4
4 10 and 15
Matrix and Determinant

78971 If A=[secθtanθ0\boldsymboltanθ\boldsymbolsecθ0001], then

1 A1 exists
2 A1 does not exist
3 |A|=2
4 none of these
Matrix and Determinant

78967 If the product of the matrix B=
[264101111] with a matrix A has the inverse
C=[101113202], then A1 equals

1 [3550914229]
2 [35500921416]
3 [3550022146]
4 [3550922146]
Matrix and Determinant

78968 If A=[2357], then A+A1=

1 [1001]
2 [5005]
3 [5005]
4 [4005]
Matrix and Determinant

78969 If A2A+I=0, then the inverse of A is

1 IA
2 AI
3 A
4 A+I
Matrix and Determinant

78970 If A=[235149072], then apply C3C3+3C2 to form a matrix B=[bij] and then find the value of a22+b21 and a11b11+a22b22 respectively.

1 20 and 5
2 5 and 20
3 5 and -4
4 10 and 15
Matrix and Determinant

78971 If A=[secθtanθ0\boldsymboltanθ\boldsymbolsecθ0001], then

1 A1 exists
2 A1 does not exist
3 |A|=2
4 none of these
Matrix and Determinant

78967 If the product of the matrix B=
[264101111] with a matrix A has the inverse
C=[101113202], then A1 equals

1 [3550914229]
2 [35500921416]
3 [3550022146]
4 [3550922146]
Matrix and Determinant

78968 If A=[2357], then A+A1=

1 [1001]
2 [5005]
3 [5005]
4 [4005]
Matrix and Determinant

78969 If A2A+I=0, then the inverse of A is

1 IA
2 AI
3 A
4 A+I
Matrix and Determinant

78970 If A=[235149072], then apply C3C3+3C2 to form a matrix B=[bij] and then find the value of a22+b21 and a11b11+a22b22 respectively.

1 20 and 5
2 5 and 20
3 5 and -4
4 10 and 15
Matrix and Determinant

78971 If A=[secθtanθ0\boldsymboltanθ\boldsymbolsecθ0001], then

1 A1 exists
2 A1 does not exist
3 |A|=2
4 none of these