Solution of System of Linear Equation Using Matrix
Matrix and Determinant

78976 If \(A=\left[\begin{array}{lll}2 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 2 & 2\end{array}\right]\), then \(\operatorname{adj}(\operatorname{adj} A)\) is equal to-

1 \(8\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]\)
2 \(16\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]\)
3 \(64\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]\)
4 None of these
Matrix and Determinant

78977 Let \(M\) be a \(3 \times 3\) non-singular matrix with det \((M)=\alpha\). If \(\left[M^{-1} \operatorname{adj}(\operatorname{adj}(M)]=K I\right.\), then the value of \(K\) is

1 1
2 \(\alpha\)
3 \(\alpha^{2}\)
4 \(\alpha^{3}\)
Matrix and Determinant

78978 If matrix
\(A=\left[\begin{array}{ccc} 3 & -2 & 4 \\ 1 & 2 & -1 \\ 0 & 1 & 1 \end{array}\right]\)
and
\(A^{-1}=\frac{1}{k} \operatorname{adj}(A)\), then \(k\) is

1 7
2 -7
3 15
4 -11
Matrix and Determinant

78979 If \(A\) and \(B\) are matrices and \(B=A B A^{-1}\) then the value of \((A+B)(A-B)\) is

1 \(A^{2}+B^{2}\)
2 \(A^{2}-B^{2}\)
3 \(A+B\)
4 \(\mathrm{A}-\mathrm{B}\)
Matrix and Determinant

78976 If \(A=\left[\begin{array}{lll}2 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 2 & 2\end{array}\right]\), then \(\operatorname{adj}(\operatorname{adj} A)\) is equal to-

1 \(8\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]\)
2 \(16\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]\)
3 \(64\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]\)
4 None of these
Matrix and Determinant

78977 Let \(M\) be a \(3 \times 3\) non-singular matrix with det \((M)=\alpha\). If \(\left[M^{-1} \operatorname{adj}(\operatorname{adj}(M)]=K I\right.\), then the value of \(K\) is

1 1
2 \(\alpha\)
3 \(\alpha^{2}\)
4 \(\alpha^{3}\)
Matrix and Determinant

78978 If matrix
\(A=\left[\begin{array}{ccc} 3 & -2 & 4 \\ 1 & 2 & -1 \\ 0 & 1 & 1 \end{array}\right]\)
and
\(A^{-1}=\frac{1}{k} \operatorname{adj}(A)\), then \(k\) is

1 7
2 -7
3 15
4 -11
Matrix and Determinant

78979 If \(A\) and \(B\) are matrices and \(B=A B A^{-1}\) then the value of \((A+B)(A-B)\) is

1 \(A^{2}+B^{2}\)
2 \(A^{2}-B^{2}\)
3 \(A+B\)
4 \(\mathrm{A}-\mathrm{B}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

78976 If \(A=\left[\begin{array}{lll}2 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 2 & 2\end{array}\right]\), then \(\operatorname{adj}(\operatorname{adj} A)\) is equal to-

1 \(8\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]\)
2 \(16\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]\)
3 \(64\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]\)
4 None of these
Matrix and Determinant

78977 Let \(M\) be a \(3 \times 3\) non-singular matrix with det \((M)=\alpha\). If \(\left[M^{-1} \operatorname{adj}(\operatorname{adj}(M)]=K I\right.\), then the value of \(K\) is

1 1
2 \(\alpha\)
3 \(\alpha^{2}\)
4 \(\alpha^{3}\)
Matrix and Determinant

78978 If matrix
\(A=\left[\begin{array}{ccc} 3 & -2 & 4 \\ 1 & 2 & -1 \\ 0 & 1 & 1 \end{array}\right]\)
and
\(A^{-1}=\frac{1}{k} \operatorname{adj}(A)\), then \(k\) is

1 7
2 -7
3 15
4 -11
Matrix and Determinant

78979 If \(A\) and \(B\) are matrices and \(B=A B A^{-1}\) then the value of \((A+B)(A-B)\) is

1 \(A^{2}+B^{2}\)
2 \(A^{2}-B^{2}\)
3 \(A+B\)
4 \(\mathrm{A}-\mathrm{B}\)
Matrix and Determinant

78976 If \(A=\left[\begin{array}{lll}2 & 0 & 0 \\ 2 & 2 & 0 \\ 2 & 2 & 2\end{array}\right]\), then \(\operatorname{adj}(\operatorname{adj} A)\) is equal to-

1 \(8\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]\)
2 \(16\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]\)
3 \(64\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]\)
4 None of these
Matrix and Determinant

78977 Let \(M\) be a \(3 \times 3\) non-singular matrix with det \((M)=\alpha\). If \(\left[M^{-1} \operatorname{adj}(\operatorname{adj}(M)]=K I\right.\), then the value of \(K\) is

1 1
2 \(\alpha\)
3 \(\alpha^{2}\)
4 \(\alpha^{3}\)
Matrix and Determinant

78978 If matrix
\(A=\left[\begin{array}{ccc} 3 & -2 & 4 \\ 1 & 2 & -1 \\ 0 & 1 & 1 \end{array}\right]\)
and
\(A^{-1}=\frac{1}{k} \operatorname{adj}(A)\), then \(k\) is

1 7
2 -7
3 15
4 -11
Matrix and Determinant

78979 If \(A\) and \(B\) are matrices and \(B=A B A^{-1}\) then the value of \((A+B)(A-B)\) is

1 \(A^{2}+B^{2}\)
2 \(A^{2}-B^{2}\)
3 \(A+B\)
4 \(\mathrm{A}-\mathrm{B}\)