78963 If A and B are square matrices of the same order such that (A+B)(A−B)=A2−B2, then (ABA−1)2=
(C) : According to given summation,(A+B)(A−B)=A2−B2AA+BA−AB−BB=A2−B2A2+BA−AB−B2=A2−B2BA−AB=0⇒BA=ABNow, (ABA−1)2=(BAA−1)2=(B⋅1)2[∵AA−1=1]=B2
78964 If A(adjA)=5I where I is the identity matrix of order 3 , then |adjA| is equal to
(D) : According to given summation,AA−1=IA⋅1|A|(adjA)=IA⋅(adjA)=|A|IAfter comparing the above equation expression with given expression, we get -|A|=5adjA=|A|A−1|adjA|=||A|A−1|=|A2|=25
78965 If A=[1−2202−33−24], then A⋅adj(A) is equal to=
(C) : We have,A=[1−2202−33−24]=1(8−6)+2(0+9)+2(0−6=2+18−12=2+6=8|A|=1(8−6)+2(0+9)+2(0−6)As we know that,A−1=AdjA|A|AA−1=A(AdjA)|A|I|A|=A(AdjA)(∵AA−1=I)Now, |A|=8A(AdjA)=8I=[800080008]
78966 If A=[3−342−340−11],B=(adjA) and C=5A,then |C||adjB| is equal to
(A) : We have,A=[3−342−340−11]So, |A|=3(−3+4)+3(2−0)+4(−2−0)|A|=1Here, it is given that,B=adjA,C=5 A|C|=|5 A|=53| A|=53=125Also, |adjB|=|adj(adjA)|=|A|(3−1)2=|A|4∴|C||adjB|=125|adj(adjA)|=125|A|4=125[∵|A|=1]