Solution of System of Linear Equation Using Matrix
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

78963 If \(A\) and \(B\) are square matrices of the same order such that \((A+B)(A-B)=A^{2}-B^{2}\), then \(\left(\mathbf{A B A}^{-1}\right)^{2}=\)

1 \(\mathrm{A}^{2} \mathrm{~B}^{2}\)
2 \(A^{2}\)
3 \(\mathrm{B}^{2}\)
4 1
Matrix and Determinant

78964 If \(A(\operatorname{adj} A)=5 I\) where \(I\) is the identity matrix of order 3 , then \(|\operatorname{adj} A|\) is equal to

1 5
2 10
3 125
4 25
Matrix and Determinant

78965 If \(A=\left[\begin{array}{ccc}1 & -2 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]\), then \(A \cdot \operatorname{adj}(A)\) is equal to=

1 \(\left[\begin{array}{lll}5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5\end{array}\right]\)
2 \(\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{array}\right]\)
3 \(\left[\begin{array}{lll}8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8\end{array}\right]\)
4 \(\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\)
Matrix and Determinant

78966 If \(A=\left[\begin{array}{rrr}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right], B=(\operatorname{adj} A)\) and \(C=5 A\),
then \(\frac{|\mathrm{C}|}{|\operatorname{adjB}|}\) is equal to

1 125
2 -1
3 5
4 -5
Matrix and Determinant

78963 If \(A\) and \(B\) are square matrices of the same order such that \((A+B)(A-B)=A^{2}-B^{2}\), then \(\left(\mathbf{A B A}^{-1}\right)^{2}=\)

1 \(\mathrm{A}^{2} \mathrm{~B}^{2}\)
2 \(A^{2}\)
3 \(\mathrm{B}^{2}\)
4 1
Matrix and Determinant

78964 If \(A(\operatorname{adj} A)=5 I\) where \(I\) is the identity matrix of order 3 , then \(|\operatorname{adj} A|\) is equal to

1 5
2 10
3 125
4 25
Matrix and Determinant

78965 If \(A=\left[\begin{array}{ccc}1 & -2 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]\), then \(A \cdot \operatorname{adj}(A)\) is equal to=

1 \(\left[\begin{array}{lll}5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5\end{array}\right]\)
2 \(\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{array}\right]\)
3 \(\left[\begin{array}{lll}8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8\end{array}\right]\)
4 \(\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\)
Matrix and Determinant

78966 If \(A=\left[\begin{array}{rrr}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right], B=(\operatorname{adj} A)\) and \(C=5 A\),
then \(\frac{|\mathrm{C}|}{|\operatorname{adjB}|}\) is equal to

1 125
2 -1
3 5
4 -5
Matrix and Determinant

78963 If \(A\) and \(B\) are square matrices of the same order such that \((A+B)(A-B)=A^{2}-B^{2}\), then \(\left(\mathbf{A B A}^{-1}\right)^{2}=\)

1 \(\mathrm{A}^{2} \mathrm{~B}^{2}\)
2 \(A^{2}\)
3 \(\mathrm{B}^{2}\)
4 1
Matrix and Determinant

78964 If \(A(\operatorname{adj} A)=5 I\) where \(I\) is the identity matrix of order 3 , then \(|\operatorname{adj} A|\) is equal to

1 5
2 10
3 125
4 25
Matrix and Determinant

78965 If \(A=\left[\begin{array}{ccc}1 & -2 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]\), then \(A \cdot \operatorname{adj}(A)\) is equal to=

1 \(\left[\begin{array}{lll}5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5\end{array}\right]\)
2 \(\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{array}\right]\)
3 \(\left[\begin{array}{lll}8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8\end{array}\right]\)
4 \(\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\)
Matrix and Determinant

78966 If \(A=\left[\begin{array}{rrr}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right], B=(\operatorname{adj} A)\) and \(C=5 A\),
then \(\frac{|\mathrm{C}|}{|\operatorname{adjB}|}\) is equal to

1 125
2 -1
3 5
4 -5
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

78963 If \(A\) and \(B\) are square matrices of the same order such that \((A+B)(A-B)=A^{2}-B^{2}\), then \(\left(\mathbf{A B A}^{-1}\right)^{2}=\)

1 \(\mathrm{A}^{2} \mathrm{~B}^{2}\)
2 \(A^{2}\)
3 \(\mathrm{B}^{2}\)
4 1
Matrix and Determinant

78964 If \(A(\operatorname{adj} A)=5 I\) where \(I\) is the identity matrix of order 3 , then \(|\operatorname{adj} A|\) is equal to

1 5
2 10
3 125
4 25
Matrix and Determinant

78965 If \(A=\left[\begin{array}{ccc}1 & -2 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]\), then \(A \cdot \operatorname{adj}(A)\) is equal to=

1 \(\left[\begin{array}{lll}5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5\end{array}\right]\)
2 \(\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5\end{array}\right]\)
3 \(\left[\begin{array}{lll}8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8\end{array}\right]\)
4 \(\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\)
Matrix and Determinant

78966 If \(A=\left[\begin{array}{rrr}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right], B=(\operatorname{adj} A)\) and \(C=5 A\),
then \(\frac{|\mathrm{C}|}{|\operatorname{adjB}|}\) is equal to

1 125
2 -1
3 5
4 -5