Adjoint and Inverse of Matrices
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

78832 If \(A=\left[\begin{array}{ll}3 & 4 \\ 5 & 7\end{array}\right]\), then \(A .(\operatorname{adj} A)\) is equal to

1 \(\mathrm{A}\)
2 \(|\vec{A}|\)
3 \(|\mathrm{A}| \mathrm{I}\)
4 None of these
Matrix and Determinant

78833 If \(A=\left[\begin{array}{cc}1 & 2 \\ 3 & -5\end{array}\right]\) then \(A^{-1}\) equal to

1 \(\left[\begin{array}{cc}-5 & -2 \\ -3 & 1\end{array}\right]\)
2 \(\left[\begin{array}{cc}5 / 11 & 2 / 11 \\ 3 / 11 & -1 / 11\end{array}\right]\)
3 \(\left[\begin{array}{ll}-5 / 11 & -2 / 11 \\ -3 / 11 & -1 / 11\end{array}\right]\)
4 \(\left[\begin{array}{cc}5 & 2 \\ 3 & -1\end{array}\right]\)
Matrix and Determinant

78834 If \(A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\), then \(A^{-1}\) is :

1 \(-\mathrm{A}\)
2 \(\mathrm{A}^{-}\)
3 1
4 None of these
Matrix and Determinant

78835 If \(\left[\begin{array}{cc}3 & -1 \\ 0 & 6\end{array}\right]\left[\begin{array}{c}3 x \\ 1\end{array}\right]+\left[\begin{array}{c}-2 x \\ 3\end{array}\right]=\left[\begin{array}{l}8 \\ 9\end{array}\right]\), then the value of \(x\) is

1 \(-\frac{3}{8}\)
2 7
3 \(-\frac{2}{9}\)
4 None of these
Matrix and Determinant

78832 If \(A=\left[\begin{array}{ll}3 & 4 \\ 5 & 7\end{array}\right]\), then \(A .(\operatorname{adj} A)\) is equal to

1 \(\mathrm{A}\)
2 \(|\vec{A}|\)
3 \(|\mathrm{A}| \mathrm{I}\)
4 None of these
Matrix and Determinant

78833 If \(A=\left[\begin{array}{cc}1 & 2 \\ 3 & -5\end{array}\right]\) then \(A^{-1}\) equal to

1 \(\left[\begin{array}{cc}-5 & -2 \\ -3 & 1\end{array}\right]\)
2 \(\left[\begin{array}{cc}5 / 11 & 2 / 11 \\ 3 / 11 & -1 / 11\end{array}\right]\)
3 \(\left[\begin{array}{ll}-5 / 11 & -2 / 11 \\ -3 / 11 & -1 / 11\end{array}\right]\)
4 \(\left[\begin{array}{cc}5 & 2 \\ 3 & -1\end{array}\right]\)
Matrix and Determinant

78834 If \(A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\), then \(A^{-1}\) is :

1 \(-\mathrm{A}\)
2 \(\mathrm{A}^{-}\)
3 1
4 None of these
Matrix and Determinant

78835 If \(\left[\begin{array}{cc}3 & -1 \\ 0 & 6\end{array}\right]\left[\begin{array}{c}3 x \\ 1\end{array}\right]+\left[\begin{array}{c}-2 x \\ 3\end{array}\right]=\left[\begin{array}{l}8 \\ 9\end{array}\right]\), then the value of \(x\) is

1 \(-\frac{3}{8}\)
2 7
3 \(-\frac{2}{9}\)
4 None of these
Matrix and Determinant

78832 If \(A=\left[\begin{array}{ll}3 & 4 \\ 5 & 7\end{array}\right]\), then \(A .(\operatorname{adj} A)\) is equal to

1 \(\mathrm{A}\)
2 \(|\vec{A}|\)
3 \(|\mathrm{A}| \mathrm{I}\)
4 None of these
Matrix and Determinant

78833 If \(A=\left[\begin{array}{cc}1 & 2 \\ 3 & -5\end{array}\right]\) then \(A^{-1}\) equal to

1 \(\left[\begin{array}{cc}-5 & -2 \\ -3 & 1\end{array}\right]\)
2 \(\left[\begin{array}{cc}5 / 11 & 2 / 11 \\ 3 / 11 & -1 / 11\end{array}\right]\)
3 \(\left[\begin{array}{ll}-5 / 11 & -2 / 11 \\ -3 / 11 & -1 / 11\end{array}\right]\)
4 \(\left[\begin{array}{cc}5 & 2 \\ 3 & -1\end{array}\right]\)
Matrix and Determinant

78834 If \(A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\), then \(A^{-1}\) is :

1 \(-\mathrm{A}\)
2 \(\mathrm{A}^{-}\)
3 1
4 None of these
Matrix and Determinant

78835 If \(\left[\begin{array}{cc}3 & -1 \\ 0 & 6\end{array}\right]\left[\begin{array}{c}3 x \\ 1\end{array}\right]+\left[\begin{array}{c}-2 x \\ 3\end{array}\right]=\left[\begin{array}{l}8 \\ 9\end{array}\right]\), then the value of \(x\) is

1 \(-\frac{3}{8}\)
2 7
3 \(-\frac{2}{9}\)
4 None of these
Matrix and Determinant

78832 If \(A=\left[\begin{array}{ll}3 & 4 \\ 5 & 7\end{array}\right]\), then \(A .(\operatorname{adj} A)\) is equal to

1 \(\mathrm{A}\)
2 \(|\vec{A}|\)
3 \(|\mathrm{A}| \mathrm{I}\)
4 None of these
Matrix and Determinant

78833 If \(A=\left[\begin{array}{cc}1 & 2 \\ 3 & -5\end{array}\right]\) then \(A^{-1}\) equal to

1 \(\left[\begin{array}{cc}-5 & -2 \\ -3 & 1\end{array}\right]\)
2 \(\left[\begin{array}{cc}5 / 11 & 2 / 11 \\ 3 / 11 & -1 / 11\end{array}\right]\)
3 \(\left[\begin{array}{ll}-5 / 11 & -2 / 11 \\ -3 / 11 & -1 / 11\end{array}\right]\)
4 \(\left[\begin{array}{cc}5 & 2 \\ 3 & -1\end{array}\right]\)
Matrix and Determinant

78834 If \(A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\), then \(A^{-1}\) is :

1 \(-\mathrm{A}\)
2 \(\mathrm{A}^{-}\)
3 1
4 None of these
Matrix and Determinant

78835 If \(\left[\begin{array}{cc}3 & -1 \\ 0 & 6\end{array}\right]\left[\begin{array}{c}3 x \\ 1\end{array}\right]+\left[\begin{array}{c}-2 x \\ 3\end{array}\right]=\left[\begin{array}{l}8 \\ 9\end{array}\right]\), then the value of \(x\) is

1 \(-\frac{3}{8}\)
2 7
3 \(-\frac{2}{9}\)
4 None of these