78835
If \(\left[\begin{array}{cc}3 & -1 \\ 0 & 6\end{array}\right]\left[\begin{array}{c}3 x \\ 1\end{array}\right]+\left[\begin{array}{c}-2 x \\ 3\end{array}\right]=\left[\begin{array}{l}8 \\ 9\end{array}\right]\), then the value of \(x\) is
1 \(-\frac{3}{8}\)
2 7
3 \(-\frac{2}{9}\)
4 None of these
Explanation:
(D) : Given that, \({\left[\begin{array}{cc} 3 & -1 \\ 0 & 6 \end{array}\right]\left[\begin{array}{c} 3 x \\ 1 \end{array}\right]+\left[\begin{array}{c} -2 \mathrm{x} \\ 3 \end{array}\right]=\left[\begin{array}{l} 8 \\ 9 \end{array}\right]}\) \({\left[\begin{array}{c} 9 \mathrm{x}+(-1) \\ 0+6 \end{array}\right]+\left[\begin{array}{c} -2 \mathrm{x} \\ 3 \end{array}\right]=\left[\begin{array}{l} 8 \\ 9 \end{array}\right]}\) \({\left[\begin{array}{c} 9 \mathrm{x}-1-2 \mathrm{x} \\ 6+3 \end{array}\right]=\left[\begin{array}{l} 8 \\ 9 \end{array}\right]}\) \({\left[\begin{array}{c} 7 \mathrm{x}-1 \\ 9 \end{array}\right]=\left[\begin{array}{c} 8 \\ 9 \end{array}\right]}\) On comparing corresponding elements on both the side we get - \(7 x-1=8\) \(7 x=9\) \(x=\frac{9}{7}\) Hence, option (d) is correct.
78835
If \(\left[\begin{array}{cc}3 & -1 \\ 0 & 6\end{array}\right]\left[\begin{array}{c}3 x \\ 1\end{array}\right]+\left[\begin{array}{c}-2 x \\ 3\end{array}\right]=\left[\begin{array}{l}8 \\ 9\end{array}\right]\), then the value of \(x\) is
1 \(-\frac{3}{8}\)
2 7
3 \(-\frac{2}{9}\)
4 None of these
Explanation:
(D) : Given that, \({\left[\begin{array}{cc} 3 & -1 \\ 0 & 6 \end{array}\right]\left[\begin{array}{c} 3 x \\ 1 \end{array}\right]+\left[\begin{array}{c} -2 \mathrm{x} \\ 3 \end{array}\right]=\left[\begin{array}{l} 8 \\ 9 \end{array}\right]}\) \({\left[\begin{array}{c} 9 \mathrm{x}+(-1) \\ 0+6 \end{array}\right]+\left[\begin{array}{c} -2 \mathrm{x} \\ 3 \end{array}\right]=\left[\begin{array}{l} 8 \\ 9 \end{array}\right]}\) \({\left[\begin{array}{c} 9 \mathrm{x}-1-2 \mathrm{x} \\ 6+3 \end{array}\right]=\left[\begin{array}{l} 8 \\ 9 \end{array}\right]}\) \({\left[\begin{array}{c} 7 \mathrm{x}-1 \\ 9 \end{array}\right]=\left[\begin{array}{c} 8 \\ 9 \end{array}\right]}\) On comparing corresponding elements on both the side we get - \(7 x-1=8\) \(7 x=9\) \(x=\frac{9}{7}\) Hence, option (d) is correct.
78835
If \(\left[\begin{array}{cc}3 & -1 \\ 0 & 6\end{array}\right]\left[\begin{array}{c}3 x \\ 1\end{array}\right]+\left[\begin{array}{c}-2 x \\ 3\end{array}\right]=\left[\begin{array}{l}8 \\ 9\end{array}\right]\), then the value of \(x\) is
1 \(-\frac{3}{8}\)
2 7
3 \(-\frac{2}{9}\)
4 None of these
Explanation:
(D) : Given that, \({\left[\begin{array}{cc} 3 & -1 \\ 0 & 6 \end{array}\right]\left[\begin{array}{c} 3 x \\ 1 \end{array}\right]+\left[\begin{array}{c} -2 \mathrm{x} \\ 3 \end{array}\right]=\left[\begin{array}{l} 8 \\ 9 \end{array}\right]}\) \({\left[\begin{array}{c} 9 \mathrm{x}+(-1) \\ 0+6 \end{array}\right]+\left[\begin{array}{c} -2 \mathrm{x} \\ 3 \end{array}\right]=\left[\begin{array}{l} 8 \\ 9 \end{array}\right]}\) \({\left[\begin{array}{c} 9 \mathrm{x}-1-2 \mathrm{x} \\ 6+3 \end{array}\right]=\left[\begin{array}{l} 8 \\ 9 \end{array}\right]}\) \({\left[\begin{array}{c} 7 \mathrm{x}-1 \\ 9 \end{array}\right]=\left[\begin{array}{c} 8 \\ 9 \end{array}\right]}\) On comparing corresponding elements on both the side we get - \(7 x-1=8\) \(7 x=9\) \(x=\frac{9}{7}\) Hence, option (d) is correct.
78835
If \(\left[\begin{array}{cc}3 & -1 \\ 0 & 6\end{array}\right]\left[\begin{array}{c}3 x \\ 1\end{array}\right]+\left[\begin{array}{c}-2 x \\ 3\end{array}\right]=\left[\begin{array}{l}8 \\ 9\end{array}\right]\), then the value of \(x\) is
1 \(-\frac{3}{8}\)
2 7
3 \(-\frac{2}{9}\)
4 None of these
Explanation:
(D) : Given that, \({\left[\begin{array}{cc} 3 & -1 \\ 0 & 6 \end{array}\right]\left[\begin{array}{c} 3 x \\ 1 \end{array}\right]+\left[\begin{array}{c} -2 \mathrm{x} \\ 3 \end{array}\right]=\left[\begin{array}{l} 8 \\ 9 \end{array}\right]}\) \({\left[\begin{array}{c} 9 \mathrm{x}+(-1) \\ 0+6 \end{array}\right]+\left[\begin{array}{c} -2 \mathrm{x} \\ 3 \end{array}\right]=\left[\begin{array}{l} 8 \\ 9 \end{array}\right]}\) \({\left[\begin{array}{c} 9 \mathrm{x}-1-2 \mathrm{x} \\ 6+3 \end{array}\right]=\left[\begin{array}{l} 8 \\ 9 \end{array}\right]}\) \({\left[\begin{array}{c} 7 \mathrm{x}-1 \\ 9 \end{array}\right]=\left[\begin{array}{c} 8 \\ 9 \end{array}\right]}\) On comparing corresponding elements on both the side we get - \(7 x-1=8\) \(7 x=9\) \(x=\frac{9}{7}\) Hence, option (d) is correct.