Adjoint and Inverse of Matrices
Matrix and Determinant

78836 Consider \(A\) and \(B\) two square matrices of same order. Select the correct alternative.

1 \(|\mathrm{AB}|\) must be greater then \(|\mathrm{A}|\)
2 \(\left|\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right|\) is not unit matrix
3 \(|\mathrm{A}+\mathrm{B}|\) must be greater than \(|\mathrm{A}|\)
4 If \(A B=0\), either \(A\) or \(B\) must be zero matrix
Matrix and Determinant

78837 If \(A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0\end{array}\right]\) and \(B=(\operatorname{adj} A)\), and
\(\mathbf{C}=\mathbf{5 A}\), then \(\frac{|\operatorname{adj} \mathbf{B}|}{|\mathrm{C}|}\)

1 5
2 25
3 -1
4 1
Matrix and Determinant

78838 If \(A=\left[\begin{array}{ccc}1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1\end{array}\right]\), then \(\left.\operatorname{det}(\operatorname{adj})(\operatorname{adj} A)\right)\) is equal to

1 \(14^{4}\)
2 \(14^{3}\)
3 \(14^{2}\)
4 14
Matrix and Determinant

78840 For non-singular square matrices \(A, B\) and \(C\) of the same order, \(\left(\mathrm{AB}^{-1} \mathrm{C}\right)^{-1}\) is equal to:

1 \(\mathrm{A}^{-1} \mathrm{BC}^{-1}\)
2 \(\mathrm{C}^{-1} \mathrm{~B}^{-1} \mathrm{~A}^{-1}\)
3 \(\mathrm{CBA}^{-1}\)
4 \(\mathrm{C}^{-1} \mathrm{BA}^{-1}\)
Matrix and Determinant

78836 Consider \(A\) and \(B\) two square matrices of same order. Select the correct alternative.

1 \(|\mathrm{AB}|\) must be greater then \(|\mathrm{A}|\)
2 \(\left|\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right|\) is not unit matrix
3 \(|\mathrm{A}+\mathrm{B}|\) must be greater than \(|\mathrm{A}|\)
4 If \(A B=0\), either \(A\) or \(B\) must be zero matrix
Matrix and Determinant

78837 If \(A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0\end{array}\right]\) and \(B=(\operatorname{adj} A)\), and
\(\mathbf{C}=\mathbf{5 A}\), then \(\frac{|\operatorname{adj} \mathbf{B}|}{|\mathrm{C}|}\)

1 5
2 25
3 -1
4 1
Matrix and Determinant

78838 If \(A=\left[\begin{array}{ccc}1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1\end{array}\right]\), then \(\left.\operatorname{det}(\operatorname{adj})(\operatorname{adj} A)\right)\) is equal to

1 \(14^{4}\)
2 \(14^{3}\)
3 \(14^{2}\)
4 14
Matrix and Determinant

78840 For non-singular square matrices \(A, B\) and \(C\) of the same order, \(\left(\mathrm{AB}^{-1} \mathrm{C}\right)^{-1}\) is equal to:

1 \(\mathrm{A}^{-1} \mathrm{BC}^{-1}\)
2 \(\mathrm{C}^{-1} \mathrm{~B}^{-1} \mathrm{~A}^{-1}\)
3 \(\mathrm{CBA}^{-1}\)
4 \(\mathrm{C}^{-1} \mathrm{BA}^{-1}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

78836 Consider \(A\) and \(B\) two square matrices of same order. Select the correct alternative.

1 \(|\mathrm{AB}|\) must be greater then \(|\mathrm{A}|\)
2 \(\left|\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right|\) is not unit matrix
3 \(|\mathrm{A}+\mathrm{B}|\) must be greater than \(|\mathrm{A}|\)
4 If \(A B=0\), either \(A\) or \(B\) must be zero matrix
Matrix and Determinant

78837 If \(A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0\end{array}\right]\) and \(B=(\operatorname{adj} A)\), and
\(\mathbf{C}=\mathbf{5 A}\), then \(\frac{|\operatorname{adj} \mathbf{B}|}{|\mathrm{C}|}\)

1 5
2 25
3 -1
4 1
Matrix and Determinant

78838 If \(A=\left[\begin{array}{ccc}1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1\end{array}\right]\), then \(\left.\operatorname{det}(\operatorname{adj})(\operatorname{adj} A)\right)\) is equal to

1 \(14^{4}\)
2 \(14^{3}\)
3 \(14^{2}\)
4 14
Matrix and Determinant

78840 For non-singular square matrices \(A, B\) and \(C\) of the same order, \(\left(\mathrm{AB}^{-1} \mathrm{C}\right)^{-1}\) is equal to:

1 \(\mathrm{A}^{-1} \mathrm{BC}^{-1}\)
2 \(\mathrm{C}^{-1} \mathrm{~B}^{-1} \mathrm{~A}^{-1}\)
3 \(\mathrm{CBA}^{-1}\)
4 \(\mathrm{C}^{-1} \mathrm{BA}^{-1}\)
Matrix and Determinant

78836 Consider \(A\) and \(B\) two square matrices of same order. Select the correct alternative.

1 \(|\mathrm{AB}|\) must be greater then \(|\mathrm{A}|\)
2 \(\left|\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right|\) is not unit matrix
3 \(|\mathrm{A}+\mathrm{B}|\) must be greater than \(|\mathrm{A}|\)
4 If \(A B=0\), either \(A\) or \(B\) must be zero matrix
Matrix and Determinant

78837 If \(A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0\end{array}\right]\) and \(B=(\operatorname{adj} A)\), and
\(\mathbf{C}=\mathbf{5 A}\), then \(\frac{|\operatorname{adj} \mathbf{B}|}{|\mathrm{C}|}\)

1 5
2 25
3 -1
4 1
Matrix and Determinant

78838 If \(A=\left[\begin{array}{ccc}1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & -1 & 1\end{array}\right]\), then \(\left.\operatorname{det}(\operatorname{adj})(\operatorname{adj} A)\right)\) is equal to

1 \(14^{4}\)
2 \(14^{3}\)
3 \(14^{2}\)
4 14
Matrix and Determinant

78840 For non-singular square matrices \(A, B\) and \(C\) of the same order, \(\left(\mathrm{AB}^{-1} \mathrm{C}\right)^{-1}\) is equal to:

1 \(\mathrm{A}^{-1} \mathrm{BC}^{-1}\)
2 \(\mathrm{C}^{-1} \mathrm{~B}^{-1} \mathrm{~A}^{-1}\)
3 \(\mathrm{CBA}^{-1}\)
4 \(\mathrm{C}^{-1} \mathrm{BA}^{-1}\)