Adjoint and Inverse of Matrices
Matrix and Determinant

78843 If \(f=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 5 & 1 & 6\end{array}\right) \in S_{6}\), then \(f^{-1}\) is

1 \(\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 7 & 5 & 1\end{array}\right)\)
2 \(\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 1 & 3 & 4 & 6\end{array}\right)\)
3 \(\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 5 & 1 & 3 & 6\end{array}\right)\)
4 \(\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 1 & 5 & 2 & 4\end{array}\right)\)
Matrix and Determinant

78845 If \(A=\left[\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right]\), then the value of \(\left|\mathbf{A}^{\mathrm{T}} \mathbf{A}^{-1}\right|\) is

1 \(\cos 4 \mathrm{x}\)
2 \(\sec ^{2} x\)
3 \(-\cos 4 x\)
4 1
Matrix and Determinant

78846 If \(A=\left[\begin{array}{cc}4 & 11 \\ 2 & 6\end{array}\right]\), then \(A^{-1}\) is equal to

1 \(\left[\begin{array}{cc}-1 & \frac{-11}{2} \\ 3 & 2\end{array}\right]\)
2 \(\left[\begin{array}{cc}3 & \frac{-11}{2} \\ -1 & 2\end{array}\right]\)
3 \(\left[\begin{array}{cc}3 & 2 \\ -1 & \frac{-11}{2}\end{array}\right]\)
4 Nonse of these
Matrix and Determinant

78847 If \(A\) is a non-singular matrix of order 3 , then what is adj \((\operatorname{adj} \mathrm{A})\) equal to?

1 \(|\mathrm{A}|^{3} \mathrm{~A}\)
2 \(|\mathrm{A}|^{2} \mathrm{~A}\)
3 \(|\mathrm{A}| \mathrm{A}\)
4 A
Matrix and Determinant

78843 If \(f=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 5 & 1 & 6\end{array}\right) \in S_{6}\), then \(f^{-1}\) is

1 \(\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 7 & 5 & 1\end{array}\right)\)
2 \(\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 1 & 3 & 4 & 6\end{array}\right)\)
3 \(\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 5 & 1 & 3 & 6\end{array}\right)\)
4 \(\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 1 & 5 & 2 & 4\end{array}\right)\)
Matrix and Determinant

78845 If \(A=\left[\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right]\), then the value of \(\left|\mathbf{A}^{\mathrm{T}} \mathbf{A}^{-1}\right|\) is

1 \(\cos 4 \mathrm{x}\)
2 \(\sec ^{2} x\)
3 \(-\cos 4 x\)
4 1
Matrix and Determinant

78846 If \(A=\left[\begin{array}{cc}4 & 11 \\ 2 & 6\end{array}\right]\), then \(A^{-1}\) is equal to

1 \(\left[\begin{array}{cc}-1 & \frac{-11}{2} \\ 3 & 2\end{array}\right]\)
2 \(\left[\begin{array}{cc}3 & \frac{-11}{2} \\ -1 & 2\end{array}\right]\)
3 \(\left[\begin{array}{cc}3 & 2 \\ -1 & \frac{-11}{2}\end{array}\right]\)
4 Nonse of these
Matrix and Determinant

78847 If \(A\) is a non-singular matrix of order 3 , then what is adj \((\operatorname{adj} \mathrm{A})\) equal to?

1 \(|\mathrm{A}|^{3} \mathrm{~A}\)
2 \(|\mathrm{A}|^{2} \mathrm{~A}\)
3 \(|\mathrm{A}| \mathrm{A}\)
4 A
Matrix and Determinant

78843 If \(f=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 5 & 1 & 6\end{array}\right) \in S_{6}\), then \(f^{-1}\) is

1 \(\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 7 & 5 & 1\end{array}\right)\)
2 \(\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 1 & 3 & 4 & 6\end{array}\right)\)
3 \(\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 5 & 1 & 3 & 6\end{array}\right)\)
4 \(\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 1 & 5 & 2 & 4\end{array}\right)\)
Matrix and Determinant

78845 If \(A=\left[\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right]\), then the value of \(\left|\mathbf{A}^{\mathrm{T}} \mathbf{A}^{-1}\right|\) is

1 \(\cos 4 \mathrm{x}\)
2 \(\sec ^{2} x\)
3 \(-\cos 4 x\)
4 1
Matrix and Determinant

78846 If \(A=\left[\begin{array}{cc}4 & 11 \\ 2 & 6\end{array}\right]\), then \(A^{-1}\) is equal to

1 \(\left[\begin{array}{cc}-1 & \frac{-11}{2} \\ 3 & 2\end{array}\right]\)
2 \(\left[\begin{array}{cc}3 & \frac{-11}{2} \\ -1 & 2\end{array}\right]\)
3 \(\left[\begin{array}{cc}3 & 2 \\ -1 & \frac{-11}{2}\end{array}\right]\)
4 Nonse of these
Matrix and Determinant

78847 If \(A\) is a non-singular matrix of order 3 , then what is adj \((\operatorname{adj} \mathrm{A})\) equal to?

1 \(|\mathrm{A}|^{3} \mathrm{~A}\)
2 \(|\mathrm{A}|^{2} \mathrm{~A}\)
3 \(|\mathrm{A}| \mathrm{A}\)
4 A
Matrix and Determinant

78843 If \(f=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 5 & 1 & 6\end{array}\right) \in S_{6}\), then \(f^{-1}\) is

1 \(\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 7 & 5 & 1\end{array}\right)\)
2 \(\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 1 & 3 & 4 & 6\end{array}\right)\)
3 \(\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 5 & 1 & 3 & 6\end{array}\right)\)
4 \(\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 1 & 5 & 2 & 4\end{array}\right)\)
Matrix and Determinant

78845 If \(A=\left[\begin{array}{cc}1 & \tan x \\ -\tan x & 1\end{array}\right]\), then the value of \(\left|\mathbf{A}^{\mathrm{T}} \mathbf{A}^{-1}\right|\) is

1 \(\cos 4 \mathrm{x}\)
2 \(\sec ^{2} x\)
3 \(-\cos 4 x\)
4 1
Matrix and Determinant

78846 If \(A=\left[\begin{array}{cc}4 & 11 \\ 2 & 6\end{array}\right]\), then \(A^{-1}\) is equal to

1 \(\left[\begin{array}{cc}-1 & \frac{-11}{2} \\ 3 & 2\end{array}\right]\)
2 \(\left[\begin{array}{cc}3 & \frac{-11}{2} \\ -1 & 2\end{array}\right]\)
3 \(\left[\begin{array}{cc}3 & 2 \\ -1 & \frac{-11}{2}\end{array}\right]\)
4 Nonse of these
Matrix and Determinant

78847 If \(A\) is a non-singular matrix of order 3 , then what is adj \((\operatorname{adj} \mathrm{A})\) equal to?

1 \(|\mathrm{A}|^{3} \mathrm{~A}\)
2 \(|\mathrm{A}|^{2} \mathrm{~A}\)
3 \(|\mathrm{A}| \mathrm{A}\)
4 A