Adjoint and Inverse of Matrices
Matrix and Determinant

78848 Let \(A\) be a \(2 \times 2\) matrix with \(\operatorname{det}(A)=-1\) and \(\operatorname{det}((A+I) \operatorname{adj}(A)+I))=4\). Then the sum of the diagonal elements of \(A\) can be :

1 -1
2 2
3 1
4 \(-\sqrt{2}\)
Matrix and Determinant

78849 Let \(A\) be a matrix of order \(3 \times 3\) and det \((A)=\) 2. Then \(\operatorname{det}\left(\operatorname{det}(\mathrm{A}) \operatorname{adj}\left(5 \operatorname{adj}\left(\mathrm{A}^{3}\right)\right)\right)\) is equal to

1 \(512 \times 10^{6}\)
2 \(256 \times 10^{6}\)
3 \(1024 \times 10^{6}\)
4 \(256 \times 10^{11}\)
Matrix and Determinant

78850 Let \(x, y, z>1\) and \(A=\left[\begin{array}{ccc}\log _{y} x & 2 & \log _{y} z \\ \log _{z} x & \log _{z} y & 3\end{array}\right]\).
The \(\left|\operatorname{adj}\left(\operatorname{adj} \mathbf{A}_{8}^{2}\right)\right|\) is equal to

1 \(4^{8}\)
2 \(2^{8}\)
3 \(2^{4}\)
4 \(6^{4}\)
Matrix and Determinant

78851 Let \(A=\left[\begin{array}{cc}\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}}\end{array}\right]\) and \(B=\left[\begin{array}{cc}1 & -i \\ 0 & 1\end{array}\right]\), where \(\mathbf{i}=\sqrt{-1}\) If \(M=A^{\mathrm{T}} \mathbf{B} A\), then the inverse of the matrix \(A M^{2023} A^{T}\) is

1 \(\left[\begin{array}{cc}1 & -2023 \\ 0 & 1\end{array}\right]\)
2 \(\left[\begin{array}{cc}1 & 0 \\ 2023& 1\end{array}\right]\)
3 \(\left[\begin{array}{cc}1 & 2023 i \\ 0 & 1\end{array}\right]\)
4 \(\left[\begin{array}{cc}1 & 0 \\ 2023 & 1\end{array}\right]\)
Matrix and Determinant

78852 If \(P\) is a \(3 \times 3\) real matrix such that \(P^{\mathrm{T}}=\mathbf{a P}+(\mathrm{a}\) -1) I, Where a \(>1\), then

1 \(\mid\) Adj \(\mathrm{P} \mid>1\)
2 \(\mid\) Adj \(\mathrm{P} \left\lvert\,=\frac{1}{2}\right.\)
3 \(\mathrm{P}\) is singular matrix
4 \(|\operatorname{Adj} \mathrm{P}|=1\)
Matrix and Determinant

78848 Let \(A\) be a \(2 \times 2\) matrix with \(\operatorname{det}(A)=-1\) and \(\operatorname{det}((A+I) \operatorname{adj}(A)+I))=4\). Then the sum of the diagonal elements of \(A\) can be :

1 -1
2 2
3 1
4 \(-\sqrt{2}\)
Matrix and Determinant

78849 Let \(A\) be a matrix of order \(3 \times 3\) and det \((A)=\) 2. Then \(\operatorname{det}\left(\operatorname{det}(\mathrm{A}) \operatorname{adj}\left(5 \operatorname{adj}\left(\mathrm{A}^{3}\right)\right)\right)\) is equal to

1 \(512 \times 10^{6}\)
2 \(256 \times 10^{6}\)
3 \(1024 \times 10^{6}\)
4 \(256 \times 10^{11}\)
Matrix and Determinant

78850 Let \(x, y, z>1\) and \(A=\left[\begin{array}{ccc}\log _{y} x & 2 & \log _{y} z \\ \log _{z} x & \log _{z} y & 3\end{array}\right]\).
The \(\left|\operatorname{adj}\left(\operatorname{adj} \mathbf{A}_{8}^{2}\right)\right|\) is equal to

1 \(4^{8}\)
2 \(2^{8}\)
3 \(2^{4}\)
4 \(6^{4}\)
Matrix and Determinant

78851 Let \(A=\left[\begin{array}{cc}\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}}\end{array}\right]\) and \(B=\left[\begin{array}{cc}1 & -i \\ 0 & 1\end{array}\right]\), where \(\mathbf{i}=\sqrt{-1}\) If \(M=A^{\mathrm{T}} \mathbf{B} A\), then the inverse of the matrix \(A M^{2023} A^{T}\) is

1 \(\left[\begin{array}{cc}1 & -2023 \\ 0 & 1\end{array}\right]\)
2 \(\left[\begin{array}{cc}1 & 0 \\ 2023& 1\end{array}\right]\)
3 \(\left[\begin{array}{cc}1 & 2023 i \\ 0 & 1\end{array}\right]\)
4 \(\left[\begin{array}{cc}1 & 0 \\ 2023 & 1\end{array}\right]\)
Matrix and Determinant

78852 If \(P\) is a \(3 \times 3\) real matrix such that \(P^{\mathrm{T}}=\mathbf{a P}+(\mathrm{a}\) -1) I, Where a \(>1\), then

1 \(\mid\) Adj \(\mathrm{P} \mid>1\)
2 \(\mid\) Adj \(\mathrm{P} \left\lvert\,=\frac{1}{2}\right.\)
3 \(\mathrm{P}\) is singular matrix
4 \(|\operatorname{Adj} \mathrm{P}|=1\)
Matrix and Determinant

78848 Let \(A\) be a \(2 \times 2\) matrix with \(\operatorname{det}(A)=-1\) and \(\operatorname{det}((A+I) \operatorname{adj}(A)+I))=4\). Then the sum of the diagonal elements of \(A\) can be :

1 -1
2 2
3 1
4 \(-\sqrt{2}\)
Matrix and Determinant

78849 Let \(A\) be a matrix of order \(3 \times 3\) and det \((A)=\) 2. Then \(\operatorname{det}\left(\operatorname{det}(\mathrm{A}) \operatorname{adj}\left(5 \operatorname{adj}\left(\mathrm{A}^{3}\right)\right)\right)\) is equal to

1 \(512 \times 10^{6}\)
2 \(256 \times 10^{6}\)
3 \(1024 \times 10^{6}\)
4 \(256 \times 10^{11}\)
Matrix and Determinant

78850 Let \(x, y, z>1\) and \(A=\left[\begin{array}{ccc}\log _{y} x & 2 & \log _{y} z \\ \log _{z} x & \log _{z} y & 3\end{array}\right]\).
The \(\left|\operatorname{adj}\left(\operatorname{adj} \mathbf{A}_{8}^{2}\right)\right|\) is equal to

1 \(4^{8}\)
2 \(2^{8}\)
3 \(2^{4}\)
4 \(6^{4}\)
Matrix and Determinant

78851 Let \(A=\left[\begin{array}{cc}\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}}\end{array}\right]\) and \(B=\left[\begin{array}{cc}1 & -i \\ 0 & 1\end{array}\right]\), where \(\mathbf{i}=\sqrt{-1}\) If \(M=A^{\mathrm{T}} \mathbf{B} A\), then the inverse of the matrix \(A M^{2023} A^{T}\) is

1 \(\left[\begin{array}{cc}1 & -2023 \\ 0 & 1\end{array}\right]\)
2 \(\left[\begin{array}{cc}1 & 0 \\ 2023& 1\end{array}\right]\)
3 \(\left[\begin{array}{cc}1 & 2023 i \\ 0 & 1\end{array}\right]\)
4 \(\left[\begin{array}{cc}1 & 0 \\ 2023 & 1\end{array}\right]\)
Matrix and Determinant

78852 If \(P\) is a \(3 \times 3\) real matrix such that \(P^{\mathrm{T}}=\mathbf{a P}+(\mathrm{a}\) -1) I, Where a \(>1\), then

1 \(\mid\) Adj \(\mathrm{P} \mid>1\)
2 \(\mid\) Adj \(\mathrm{P} \left\lvert\,=\frac{1}{2}\right.\)
3 \(\mathrm{P}\) is singular matrix
4 \(|\operatorname{Adj} \mathrm{P}|=1\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

78848 Let \(A\) be a \(2 \times 2\) matrix with \(\operatorname{det}(A)=-1\) and \(\operatorname{det}((A+I) \operatorname{adj}(A)+I))=4\). Then the sum of the diagonal elements of \(A\) can be :

1 -1
2 2
3 1
4 \(-\sqrt{2}\)
Matrix and Determinant

78849 Let \(A\) be a matrix of order \(3 \times 3\) and det \((A)=\) 2. Then \(\operatorname{det}\left(\operatorname{det}(\mathrm{A}) \operatorname{adj}\left(5 \operatorname{adj}\left(\mathrm{A}^{3}\right)\right)\right)\) is equal to

1 \(512 \times 10^{6}\)
2 \(256 \times 10^{6}\)
3 \(1024 \times 10^{6}\)
4 \(256 \times 10^{11}\)
Matrix and Determinant

78850 Let \(x, y, z>1\) and \(A=\left[\begin{array}{ccc}\log _{y} x & 2 & \log _{y} z \\ \log _{z} x & \log _{z} y & 3\end{array}\right]\).
The \(\left|\operatorname{adj}\left(\operatorname{adj} \mathbf{A}_{8}^{2}\right)\right|\) is equal to

1 \(4^{8}\)
2 \(2^{8}\)
3 \(2^{4}\)
4 \(6^{4}\)
Matrix and Determinant

78851 Let \(A=\left[\begin{array}{cc}\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}}\end{array}\right]\) and \(B=\left[\begin{array}{cc}1 & -i \\ 0 & 1\end{array}\right]\), where \(\mathbf{i}=\sqrt{-1}\) If \(M=A^{\mathrm{T}} \mathbf{B} A\), then the inverse of the matrix \(A M^{2023} A^{T}\) is

1 \(\left[\begin{array}{cc}1 & -2023 \\ 0 & 1\end{array}\right]\)
2 \(\left[\begin{array}{cc}1 & 0 \\ 2023& 1\end{array}\right]\)
3 \(\left[\begin{array}{cc}1 & 2023 i \\ 0 & 1\end{array}\right]\)
4 \(\left[\begin{array}{cc}1 & 0 \\ 2023 & 1\end{array}\right]\)
Matrix and Determinant

78852 If \(P\) is a \(3 \times 3\) real matrix such that \(P^{\mathrm{T}}=\mathbf{a P}+(\mathrm{a}\) -1) I, Where a \(>1\), then

1 \(\mid\) Adj \(\mathrm{P} \mid>1\)
2 \(\mid\) Adj \(\mathrm{P} \left\lvert\,=\frac{1}{2}\right.\)
3 \(\mathrm{P}\) is singular matrix
4 \(|\operatorname{Adj} \mathrm{P}|=1\)
Matrix and Determinant

78848 Let \(A\) be a \(2 \times 2\) matrix with \(\operatorname{det}(A)=-1\) and \(\operatorname{det}((A+I) \operatorname{adj}(A)+I))=4\). Then the sum of the diagonal elements of \(A\) can be :

1 -1
2 2
3 1
4 \(-\sqrt{2}\)
Matrix and Determinant

78849 Let \(A\) be a matrix of order \(3 \times 3\) and det \((A)=\) 2. Then \(\operatorname{det}\left(\operatorname{det}(\mathrm{A}) \operatorname{adj}\left(5 \operatorname{adj}\left(\mathrm{A}^{3}\right)\right)\right)\) is equal to

1 \(512 \times 10^{6}\)
2 \(256 \times 10^{6}\)
3 \(1024 \times 10^{6}\)
4 \(256 \times 10^{11}\)
Matrix and Determinant

78850 Let \(x, y, z>1\) and \(A=\left[\begin{array}{ccc}\log _{y} x & 2 & \log _{y} z \\ \log _{z} x & \log _{z} y & 3\end{array}\right]\).
The \(\left|\operatorname{adj}\left(\operatorname{adj} \mathbf{A}_{8}^{2}\right)\right|\) is equal to

1 \(4^{8}\)
2 \(2^{8}\)
3 \(2^{4}\)
4 \(6^{4}\)
Matrix and Determinant

78851 Let \(A=\left[\begin{array}{cc}\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}}\end{array}\right]\) and \(B=\left[\begin{array}{cc}1 & -i \\ 0 & 1\end{array}\right]\), where \(\mathbf{i}=\sqrt{-1}\) If \(M=A^{\mathrm{T}} \mathbf{B} A\), then the inverse of the matrix \(A M^{2023} A^{T}\) is

1 \(\left[\begin{array}{cc}1 & -2023 \\ 0 & 1\end{array}\right]\)
2 \(\left[\begin{array}{cc}1 & 0 \\ 2023& 1\end{array}\right]\)
3 \(\left[\begin{array}{cc}1 & 2023 i \\ 0 & 1\end{array}\right]\)
4 \(\left[\begin{array}{cc}1 & 0 \\ 2023 & 1\end{array}\right]\)
Matrix and Determinant

78852 If \(P\) is a \(3 \times 3\) real matrix such that \(P^{\mathrm{T}}=\mathbf{a P}+(\mathrm{a}\) -1) I, Where a \(>1\), then

1 \(\mid\) Adj \(\mathrm{P} \mid>1\)
2 \(\mid\) Adj \(\mathrm{P} \left\lvert\,=\frac{1}{2}\right.\)
3 \(\mathrm{P}\) is singular matrix
4 \(|\operatorname{Adj} \mathrm{P}|=1\)