78851 Let \(A=\left[\begin{array}{cc}\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}}\end{array}\right]\) and \(B=\left[\begin{array}{cc}1 & -i \\ 0 & 1\end{array}\right]\), where \(\mathbf{i}=\sqrt{-1}\) If \(M=A^{\mathrm{T}} \mathbf{B} A\), then the inverse of the matrix \(A M^{2023} A^{T}\) is
78851 Let \(A=\left[\begin{array}{cc}\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}}\end{array}\right]\) and \(B=\left[\begin{array}{cc}1 & -i \\ 0 & 1\end{array}\right]\), where \(\mathbf{i}=\sqrt{-1}\) If \(M=A^{\mathrm{T}} \mathbf{B} A\), then the inverse of the matrix \(A M^{2023} A^{T}\) is
78851 Let \(A=\left[\begin{array}{cc}\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}}\end{array}\right]\) and \(B=\left[\begin{array}{cc}1 & -i \\ 0 & 1\end{array}\right]\), where \(\mathbf{i}=\sqrt{-1}\) If \(M=A^{\mathrm{T}} \mathbf{B} A\), then the inverse of the matrix \(A M^{2023} A^{T}\) is
78851 Let \(A=\left[\begin{array}{cc}\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}}\end{array}\right]\) and \(B=\left[\begin{array}{cc}1 & -i \\ 0 & 1\end{array}\right]\), where \(\mathbf{i}=\sqrt{-1}\) If \(M=A^{\mathrm{T}} \mathbf{B} A\), then the inverse of the matrix \(A M^{2023} A^{T}\) is
78851 Let \(A=\left[\begin{array}{cc}\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\ \frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}}\end{array}\right]\) and \(B=\left[\begin{array}{cc}1 & -i \\ 0 & 1\end{array}\right]\), where \(\mathbf{i}=\sqrt{-1}\) If \(M=A^{\mathrm{T}} \mathbf{B} A\), then the inverse of the matrix \(A M^{2023} A^{T}\) is