155177
An initially charged undriven LCR circuit having inductance $\mathrm{L}$, capacitance $\mathrm{C}$ and resistance $R$ will be
1 oscillate with frequency $\frac{1}{\sqrt{\mathrm{LC}}}$
2 oscillate without damping, if $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$
3 oscillate with damping, if $\mathrm{R}^{2}>\frac{4 \mathrm{~L}}{\mathrm{C}}$
4 oscillate with damping, if $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$
Explanation:
D In an L-C-R circuit, When $\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}}=\frac{1}{\mathrm{LC}}$, charge decays exponentially and no oscillations occurs. When $\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}}>\frac{1}{\mathrm{LC}}$, then also charge decays exponentially and no oscillations occurs. But when $\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}} \lt \frac{1}{\mathrm{LC}}$ or when $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$, then oscillations occurs with frequency - $\mathrm{f}=\frac{1}{2 \pi} \sqrt{\frac{1}{\mathrm{LC}}-\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}}}$
TS- EAMCET-05.05.2018
Alternating Current
155205
In an L-C-R circuit
1 The impedance is equal to reactance
2 The ratio between effective voltage to effective current is called reactance
3 At resonance the resistance is equal to the reactance
4 The current flowing is called wattless current
5 At resonance the net reactance is zero
Explanation:
E In an LCR series circuit, the capacitive and inductance reactance have opposing effects. So, the net reactance $\mathrm{X}=\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}$ And as we know, at resonance $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$ Thus, net reactance $(X)=0$.
Kerala CEE- 2013
Alternating Current
155213
The frequency of the output signal becomes times by doubling the value of the capacitance in the LC oscillator circuit.
1 $\frac{1}{\sqrt{2}}$
2 $\sqrt{2}$
3 $\frac{1}{2}$
4 2
Explanation:
A We know that, $\quad \mathrm{f}=\frac{1}{2 \pi} \sqrt{\frac{1}{\mathrm{LC}}}$ $\text { So, } \quad \mathrm{f} \propto \frac{1}{\sqrt{\mathrm{C}}}$ $\quad \mathrm{f}^{\prime} \propto \frac{1}{\sqrt{2 \mathrm{C}}}$ Hence, the frequency of the output $1 / \sqrt{2}$ times by doubling the value of the the LC oscillator circuit.
GUJCET 2014
Alternating Current
155219
The current in LCR circuit is maximum where-
1 $\mathrm{X}_{\mathrm{L}}=0$
2 $X_{L}=X_{C}$
3 $X_{C}=0$
4 $X_{L}^{2}+X_{C}^{2}=1$
Explanation:
B We know that, current in LCR circuit, $I=\frac{E_{0}}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}}$ When, $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$ then current is maximum in LCR circuit.
BCECE-2013
Alternating Current
155233
An $L-C-R$ circuit contains $R=50 \Omega, L=1 \mathrm{mH}$ and $\mathrm{C}=0.1 \mu \mathrm{F}$. The impedance of the circuit will be minimum for a frequency of
1 $\frac{10^{5}}{2 \pi} \mathrm{Hz}$
2 $\frac{10^{6}}{2 \pi} \mathrm{Hz}$
3 $2 \pi \times 10^{5} \mathrm{~Hz}$
4 $2 \pi \times 10^{6} \mathrm{~Hz}$
Explanation:
A Given that, $\mathrm{R}=50 \Omega, \mathrm{L}=1 \mathrm{mH}, \mathrm{C}=0.1 \mu \mathrm{F}=0.1 \times 10^{-6} \mathrm{~F}$ Impedance of L-C-R circuit will be minimum if frequency $(f)=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}$ $\mathrm{f}=\frac{1}{2 \pi \sqrt{1 \times 10^{-3} \times 0.1 \times 10^{-6}}}$ $\mathrm{f}=\frac{10^{5}}{2 \pi} \mathrm{Hz}$
155177
An initially charged undriven LCR circuit having inductance $\mathrm{L}$, capacitance $\mathrm{C}$ and resistance $R$ will be
1 oscillate with frequency $\frac{1}{\sqrt{\mathrm{LC}}}$
2 oscillate without damping, if $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$
3 oscillate with damping, if $\mathrm{R}^{2}>\frac{4 \mathrm{~L}}{\mathrm{C}}$
4 oscillate with damping, if $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$
Explanation:
D In an L-C-R circuit, When $\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}}=\frac{1}{\mathrm{LC}}$, charge decays exponentially and no oscillations occurs. When $\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}}>\frac{1}{\mathrm{LC}}$, then also charge decays exponentially and no oscillations occurs. But when $\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}} \lt \frac{1}{\mathrm{LC}}$ or when $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$, then oscillations occurs with frequency - $\mathrm{f}=\frac{1}{2 \pi} \sqrt{\frac{1}{\mathrm{LC}}-\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}}}$
TS- EAMCET-05.05.2018
Alternating Current
155205
In an L-C-R circuit
1 The impedance is equal to reactance
2 The ratio between effective voltage to effective current is called reactance
3 At resonance the resistance is equal to the reactance
4 The current flowing is called wattless current
5 At resonance the net reactance is zero
Explanation:
E In an LCR series circuit, the capacitive and inductance reactance have opposing effects. So, the net reactance $\mathrm{X}=\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}$ And as we know, at resonance $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$ Thus, net reactance $(X)=0$.
Kerala CEE- 2013
Alternating Current
155213
The frequency of the output signal becomes times by doubling the value of the capacitance in the LC oscillator circuit.
1 $\frac{1}{\sqrt{2}}$
2 $\sqrt{2}$
3 $\frac{1}{2}$
4 2
Explanation:
A We know that, $\quad \mathrm{f}=\frac{1}{2 \pi} \sqrt{\frac{1}{\mathrm{LC}}}$ $\text { So, } \quad \mathrm{f} \propto \frac{1}{\sqrt{\mathrm{C}}}$ $\quad \mathrm{f}^{\prime} \propto \frac{1}{\sqrt{2 \mathrm{C}}}$ Hence, the frequency of the output $1 / \sqrt{2}$ times by doubling the value of the the LC oscillator circuit.
GUJCET 2014
Alternating Current
155219
The current in LCR circuit is maximum where-
1 $\mathrm{X}_{\mathrm{L}}=0$
2 $X_{L}=X_{C}$
3 $X_{C}=0$
4 $X_{L}^{2}+X_{C}^{2}=1$
Explanation:
B We know that, current in LCR circuit, $I=\frac{E_{0}}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}}$ When, $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$ then current is maximum in LCR circuit.
BCECE-2013
Alternating Current
155233
An $L-C-R$ circuit contains $R=50 \Omega, L=1 \mathrm{mH}$ and $\mathrm{C}=0.1 \mu \mathrm{F}$. The impedance of the circuit will be minimum for a frequency of
1 $\frac{10^{5}}{2 \pi} \mathrm{Hz}$
2 $\frac{10^{6}}{2 \pi} \mathrm{Hz}$
3 $2 \pi \times 10^{5} \mathrm{~Hz}$
4 $2 \pi \times 10^{6} \mathrm{~Hz}$
Explanation:
A Given that, $\mathrm{R}=50 \Omega, \mathrm{L}=1 \mathrm{mH}, \mathrm{C}=0.1 \mu \mathrm{F}=0.1 \times 10^{-6} \mathrm{~F}$ Impedance of L-C-R circuit will be minimum if frequency $(f)=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}$ $\mathrm{f}=\frac{1}{2 \pi \sqrt{1 \times 10^{-3} \times 0.1 \times 10^{-6}}}$ $\mathrm{f}=\frac{10^{5}}{2 \pi} \mathrm{Hz}$
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Alternating Current
155177
An initially charged undriven LCR circuit having inductance $\mathrm{L}$, capacitance $\mathrm{C}$ and resistance $R$ will be
1 oscillate with frequency $\frac{1}{\sqrt{\mathrm{LC}}}$
2 oscillate without damping, if $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$
3 oscillate with damping, if $\mathrm{R}^{2}>\frac{4 \mathrm{~L}}{\mathrm{C}}$
4 oscillate with damping, if $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$
Explanation:
D In an L-C-R circuit, When $\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}}=\frac{1}{\mathrm{LC}}$, charge decays exponentially and no oscillations occurs. When $\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}}>\frac{1}{\mathrm{LC}}$, then also charge decays exponentially and no oscillations occurs. But when $\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}} \lt \frac{1}{\mathrm{LC}}$ or when $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$, then oscillations occurs with frequency - $\mathrm{f}=\frac{1}{2 \pi} \sqrt{\frac{1}{\mathrm{LC}}-\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}}}$
TS- EAMCET-05.05.2018
Alternating Current
155205
In an L-C-R circuit
1 The impedance is equal to reactance
2 The ratio between effective voltage to effective current is called reactance
3 At resonance the resistance is equal to the reactance
4 The current flowing is called wattless current
5 At resonance the net reactance is zero
Explanation:
E In an LCR series circuit, the capacitive and inductance reactance have opposing effects. So, the net reactance $\mathrm{X}=\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}$ And as we know, at resonance $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$ Thus, net reactance $(X)=0$.
Kerala CEE- 2013
Alternating Current
155213
The frequency of the output signal becomes times by doubling the value of the capacitance in the LC oscillator circuit.
1 $\frac{1}{\sqrt{2}}$
2 $\sqrt{2}$
3 $\frac{1}{2}$
4 2
Explanation:
A We know that, $\quad \mathrm{f}=\frac{1}{2 \pi} \sqrt{\frac{1}{\mathrm{LC}}}$ $\text { So, } \quad \mathrm{f} \propto \frac{1}{\sqrt{\mathrm{C}}}$ $\quad \mathrm{f}^{\prime} \propto \frac{1}{\sqrt{2 \mathrm{C}}}$ Hence, the frequency of the output $1 / \sqrt{2}$ times by doubling the value of the the LC oscillator circuit.
GUJCET 2014
Alternating Current
155219
The current in LCR circuit is maximum where-
1 $\mathrm{X}_{\mathrm{L}}=0$
2 $X_{L}=X_{C}$
3 $X_{C}=0$
4 $X_{L}^{2}+X_{C}^{2}=1$
Explanation:
B We know that, current in LCR circuit, $I=\frac{E_{0}}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}}$ When, $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$ then current is maximum in LCR circuit.
BCECE-2013
Alternating Current
155233
An $L-C-R$ circuit contains $R=50 \Omega, L=1 \mathrm{mH}$ and $\mathrm{C}=0.1 \mu \mathrm{F}$. The impedance of the circuit will be minimum for a frequency of
1 $\frac{10^{5}}{2 \pi} \mathrm{Hz}$
2 $\frac{10^{6}}{2 \pi} \mathrm{Hz}$
3 $2 \pi \times 10^{5} \mathrm{~Hz}$
4 $2 \pi \times 10^{6} \mathrm{~Hz}$
Explanation:
A Given that, $\mathrm{R}=50 \Omega, \mathrm{L}=1 \mathrm{mH}, \mathrm{C}=0.1 \mu \mathrm{F}=0.1 \times 10^{-6} \mathrm{~F}$ Impedance of L-C-R circuit will be minimum if frequency $(f)=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}$ $\mathrm{f}=\frac{1}{2 \pi \sqrt{1 \times 10^{-3} \times 0.1 \times 10^{-6}}}$ $\mathrm{f}=\frac{10^{5}}{2 \pi} \mathrm{Hz}$
155177
An initially charged undriven LCR circuit having inductance $\mathrm{L}$, capacitance $\mathrm{C}$ and resistance $R$ will be
1 oscillate with frequency $\frac{1}{\sqrt{\mathrm{LC}}}$
2 oscillate without damping, if $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$
3 oscillate with damping, if $\mathrm{R}^{2}>\frac{4 \mathrm{~L}}{\mathrm{C}}$
4 oscillate with damping, if $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$
Explanation:
D In an L-C-R circuit, When $\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}}=\frac{1}{\mathrm{LC}}$, charge decays exponentially and no oscillations occurs. When $\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}}>\frac{1}{\mathrm{LC}}$, then also charge decays exponentially and no oscillations occurs. But when $\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}} \lt \frac{1}{\mathrm{LC}}$ or when $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$, then oscillations occurs with frequency - $\mathrm{f}=\frac{1}{2 \pi} \sqrt{\frac{1}{\mathrm{LC}}-\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}}}$
TS- EAMCET-05.05.2018
Alternating Current
155205
In an L-C-R circuit
1 The impedance is equal to reactance
2 The ratio between effective voltage to effective current is called reactance
3 At resonance the resistance is equal to the reactance
4 The current flowing is called wattless current
5 At resonance the net reactance is zero
Explanation:
E In an LCR series circuit, the capacitive and inductance reactance have opposing effects. So, the net reactance $\mathrm{X}=\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}$ And as we know, at resonance $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$ Thus, net reactance $(X)=0$.
Kerala CEE- 2013
Alternating Current
155213
The frequency of the output signal becomes times by doubling the value of the capacitance in the LC oscillator circuit.
1 $\frac{1}{\sqrt{2}}$
2 $\sqrt{2}$
3 $\frac{1}{2}$
4 2
Explanation:
A We know that, $\quad \mathrm{f}=\frac{1}{2 \pi} \sqrt{\frac{1}{\mathrm{LC}}}$ $\text { So, } \quad \mathrm{f} \propto \frac{1}{\sqrt{\mathrm{C}}}$ $\quad \mathrm{f}^{\prime} \propto \frac{1}{\sqrt{2 \mathrm{C}}}$ Hence, the frequency of the output $1 / \sqrt{2}$ times by doubling the value of the the LC oscillator circuit.
GUJCET 2014
Alternating Current
155219
The current in LCR circuit is maximum where-
1 $\mathrm{X}_{\mathrm{L}}=0$
2 $X_{L}=X_{C}$
3 $X_{C}=0$
4 $X_{L}^{2}+X_{C}^{2}=1$
Explanation:
B We know that, current in LCR circuit, $I=\frac{E_{0}}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}}$ When, $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$ then current is maximum in LCR circuit.
BCECE-2013
Alternating Current
155233
An $L-C-R$ circuit contains $R=50 \Omega, L=1 \mathrm{mH}$ and $\mathrm{C}=0.1 \mu \mathrm{F}$. The impedance of the circuit will be minimum for a frequency of
1 $\frac{10^{5}}{2 \pi} \mathrm{Hz}$
2 $\frac{10^{6}}{2 \pi} \mathrm{Hz}$
3 $2 \pi \times 10^{5} \mathrm{~Hz}$
4 $2 \pi \times 10^{6} \mathrm{~Hz}$
Explanation:
A Given that, $\mathrm{R}=50 \Omega, \mathrm{L}=1 \mathrm{mH}, \mathrm{C}=0.1 \mu \mathrm{F}=0.1 \times 10^{-6} \mathrm{~F}$ Impedance of L-C-R circuit will be minimum if frequency $(f)=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}$ $\mathrm{f}=\frac{1}{2 \pi \sqrt{1 \times 10^{-3} \times 0.1 \times 10^{-6}}}$ $\mathrm{f}=\frac{10^{5}}{2 \pi} \mathrm{Hz}$
155177
An initially charged undriven LCR circuit having inductance $\mathrm{L}$, capacitance $\mathrm{C}$ and resistance $R$ will be
1 oscillate with frequency $\frac{1}{\sqrt{\mathrm{LC}}}$
2 oscillate without damping, if $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$
3 oscillate with damping, if $\mathrm{R}^{2}>\frac{4 \mathrm{~L}}{\mathrm{C}}$
4 oscillate with damping, if $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$
Explanation:
D In an L-C-R circuit, When $\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}}=\frac{1}{\mathrm{LC}}$, charge decays exponentially and no oscillations occurs. When $\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}}>\frac{1}{\mathrm{LC}}$, then also charge decays exponentially and no oscillations occurs. But when $\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}} \lt \frac{1}{\mathrm{LC}}$ or when $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$, then oscillations occurs with frequency - $\mathrm{f}=\frac{1}{2 \pi} \sqrt{\frac{1}{\mathrm{LC}}-\frac{\mathrm{R}^{2}}{4 \mathrm{~L}^{2}}}$
TS- EAMCET-05.05.2018
Alternating Current
155205
In an L-C-R circuit
1 The impedance is equal to reactance
2 The ratio between effective voltage to effective current is called reactance
3 At resonance the resistance is equal to the reactance
4 The current flowing is called wattless current
5 At resonance the net reactance is zero
Explanation:
E In an LCR series circuit, the capacitive and inductance reactance have opposing effects. So, the net reactance $\mathrm{X}=\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}$ And as we know, at resonance $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$ Thus, net reactance $(X)=0$.
Kerala CEE- 2013
Alternating Current
155213
The frequency of the output signal becomes times by doubling the value of the capacitance in the LC oscillator circuit.
1 $\frac{1}{\sqrt{2}}$
2 $\sqrt{2}$
3 $\frac{1}{2}$
4 2
Explanation:
A We know that, $\quad \mathrm{f}=\frac{1}{2 \pi} \sqrt{\frac{1}{\mathrm{LC}}}$ $\text { So, } \quad \mathrm{f} \propto \frac{1}{\sqrt{\mathrm{C}}}$ $\quad \mathrm{f}^{\prime} \propto \frac{1}{\sqrt{2 \mathrm{C}}}$ Hence, the frequency of the output $1 / \sqrt{2}$ times by doubling the value of the the LC oscillator circuit.
GUJCET 2014
Alternating Current
155219
The current in LCR circuit is maximum where-
1 $\mathrm{X}_{\mathrm{L}}=0$
2 $X_{L}=X_{C}$
3 $X_{C}=0$
4 $X_{L}^{2}+X_{C}^{2}=1$
Explanation:
B We know that, current in LCR circuit, $I=\frac{E_{0}}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}}$ When, $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$ then current is maximum in LCR circuit.
BCECE-2013
Alternating Current
155233
An $L-C-R$ circuit contains $R=50 \Omega, L=1 \mathrm{mH}$ and $\mathrm{C}=0.1 \mu \mathrm{F}$. The impedance of the circuit will be minimum for a frequency of
1 $\frac{10^{5}}{2 \pi} \mathrm{Hz}$
2 $\frac{10^{6}}{2 \pi} \mathrm{Hz}$
3 $2 \pi \times 10^{5} \mathrm{~Hz}$
4 $2 \pi \times 10^{6} \mathrm{~Hz}$
Explanation:
A Given that, $\mathrm{R}=50 \Omega, \mathrm{L}=1 \mathrm{mH}, \mathrm{C}=0.1 \mu \mathrm{F}=0.1 \times 10^{-6} \mathrm{~F}$ Impedance of L-C-R circuit will be minimum if frequency $(f)=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}$ $\mathrm{f}=\frac{1}{2 \pi \sqrt{1 \times 10^{-3} \times 0.1 \times 10^{-6}}}$ $\mathrm{f}=\frac{10^{5}}{2 \pi} \mathrm{Hz}$