02. A.C. Circuit (L-C-R, LC Circuit)
Alternating Current

155177 An initially charged undriven LCR circuit having inductance $\mathrm{L}$, capacitance $\mathrm{C}$ and resistance $R$ will be

1 oscillate with frequency $\frac{1}{\sqrt{\mathrm{LC}}}$
2 oscillate without damping, if $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$
3 oscillate with damping, if $\mathrm{R}^{2}>\frac{4 \mathrm{~L}}{\mathrm{C}}$
4 oscillate with damping, if $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$
Alternating Current

155205 In an L-C-R circuit

1 The impedance is equal to reactance
2 The ratio between effective voltage to effective current is called reactance
3 At resonance the resistance is equal to the reactance
4 The current flowing is called wattless current
5 At resonance the net reactance is zero
Alternating Current

155213 The frequency of the output signal becomes times by doubling the value of the capacitance in the LC oscillator circuit.

1 $\frac{1}{\sqrt{2}}$
2 $\sqrt{2}$
3 $\frac{1}{2}$
4 2
Alternating Current

155219 The current in LCR circuit is maximum where-

1 $\mathrm{X}_{\mathrm{L}}=0$
2 $X_{L}=X_{C}$
3 $X_{C}=0$
4 $X_{L}^{2}+X_{C}^{2}=1$
Alternating Current

155233 An $L-C-R$ circuit contains $R=50 \Omega, L=1 \mathrm{mH}$ and $\mathrm{C}=0.1 \mu \mathrm{F}$. The impedance of the circuit will be minimum for a frequency of

1 $\frac{10^{5}}{2 \pi} \mathrm{Hz}$
2 $\frac{10^{6}}{2 \pi} \mathrm{Hz}$
3 $2 \pi \times 10^{5} \mathrm{~Hz}$
4 $2 \pi \times 10^{6} \mathrm{~Hz}$
Alternating Current

155177 An initially charged undriven LCR circuit having inductance $\mathrm{L}$, capacitance $\mathrm{C}$ and resistance $R$ will be

1 oscillate with frequency $\frac{1}{\sqrt{\mathrm{LC}}}$
2 oscillate without damping, if $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$
3 oscillate with damping, if $\mathrm{R}^{2}>\frac{4 \mathrm{~L}}{\mathrm{C}}$
4 oscillate with damping, if $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$
Alternating Current

155205 In an L-C-R circuit

1 The impedance is equal to reactance
2 The ratio between effective voltage to effective current is called reactance
3 At resonance the resistance is equal to the reactance
4 The current flowing is called wattless current
5 At resonance the net reactance is zero
Alternating Current

155213 The frequency of the output signal becomes times by doubling the value of the capacitance in the LC oscillator circuit.

1 $\frac{1}{\sqrt{2}}$
2 $\sqrt{2}$
3 $\frac{1}{2}$
4 2
Alternating Current

155219 The current in LCR circuit is maximum where-

1 $\mathrm{X}_{\mathrm{L}}=0$
2 $X_{L}=X_{C}$
3 $X_{C}=0$
4 $X_{L}^{2}+X_{C}^{2}=1$
Alternating Current

155233 An $L-C-R$ circuit contains $R=50 \Omega, L=1 \mathrm{mH}$ and $\mathrm{C}=0.1 \mu \mathrm{F}$. The impedance of the circuit will be minimum for a frequency of

1 $\frac{10^{5}}{2 \pi} \mathrm{Hz}$
2 $\frac{10^{6}}{2 \pi} \mathrm{Hz}$
3 $2 \pi \times 10^{5} \mathrm{~Hz}$
4 $2 \pi \times 10^{6} \mathrm{~Hz}$
Alternating Current

155177 An initially charged undriven LCR circuit having inductance $\mathrm{L}$, capacitance $\mathrm{C}$ and resistance $R$ will be

1 oscillate with frequency $\frac{1}{\sqrt{\mathrm{LC}}}$
2 oscillate without damping, if $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$
3 oscillate with damping, if $\mathrm{R}^{2}>\frac{4 \mathrm{~L}}{\mathrm{C}}$
4 oscillate with damping, if $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$
Alternating Current

155205 In an L-C-R circuit

1 The impedance is equal to reactance
2 The ratio between effective voltage to effective current is called reactance
3 At resonance the resistance is equal to the reactance
4 The current flowing is called wattless current
5 At resonance the net reactance is zero
Alternating Current

155213 The frequency of the output signal becomes times by doubling the value of the capacitance in the LC oscillator circuit.

1 $\frac{1}{\sqrt{2}}$
2 $\sqrt{2}$
3 $\frac{1}{2}$
4 2
Alternating Current

155219 The current in LCR circuit is maximum where-

1 $\mathrm{X}_{\mathrm{L}}=0$
2 $X_{L}=X_{C}$
3 $X_{C}=0$
4 $X_{L}^{2}+X_{C}^{2}=1$
Alternating Current

155233 An $L-C-R$ circuit contains $R=50 \Omega, L=1 \mathrm{mH}$ and $\mathrm{C}=0.1 \mu \mathrm{F}$. The impedance of the circuit will be minimum for a frequency of

1 $\frac{10^{5}}{2 \pi} \mathrm{Hz}$
2 $\frac{10^{6}}{2 \pi} \mathrm{Hz}$
3 $2 \pi \times 10^{5} \mathrm{~Hz}$
4 $2 \pi \times 10^{6} \mathrm{~Hz}$
Alternating Current

155177 An initially charged undriven LCR circuit having inductance $\mathrm{L}$, capacitance $\mathrm{C}$ and resistance $R$ will be

1 oscillate with frequency $\frac{1}{\sqrt{\mathrm{LC}}}$
2 oscillate without damping, if $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$
3 oscillate with damping, if $\mathrm{R}^{2}>\frac{4 \mathrm{~L}}{\mathrm{C}}$
4 oscillate with damping, if $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$
Alternating Current

155205 In an L-C-R circuit

1 The impedance is equal to reactance
2 The ratio between effective voltage to effective current is called reactance
3 At resonance the resistance is equal to the reactance
4 The current flowing is called wattless current
5 At resonance the net reactance is zero
Alternating Current

155213 The frequency of the output signal becomes times by doubling the value of the capacitance in the LC oscillator circuit.

1 $\frac{1}{\sqrt{2}}$
2 $\sqrt{2}$
3 $\frac{1}{2}$
4 2
Alternating Current

155219 The current in LCR circuit is maximum where-

1 $\mathrm{X}_{\mathrm{L}}=0$
2 $X_{L}=X_{C}$
3 $X_{C}=0$
4 $X_{L}^{2}+X_{C}^{2}=1$
Alternating Current

155233 An $L-C-R$ circuit contains $R=50 \Omega, L=1 \mathrm{mH}$ and $\mathrm{C}=0.1 \mu \mathrm{F}$. The impedance of the circuit will be minimum for a frequency of

1 $\frac{10^{5}}{2 \pi} \mathrm{Hz}$
2 $\frac{10^{6}}{2 \pi} \mathrm{Hz}$
3 $2 \pi \times 10^{5} \mathrm{~Hz}$
4 $2 \pi \times 10^{6} \mathrm{~Hz}$
Alternating Current

155177 An initially charged undriven LCR circuit having inductance $\mathrm{L}$, capacitance $\mathrm{C}$ and resistance $R$ will be

1 oscillate with frequency $\frac{1}{\sqrt{\mathrm{LC}}}$
2 oscillate without damping, if $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$
3 oscillate with damping, if $\mathrm{R}^{2}>\frac{4 \mathrm{~L}}{\mathrm{C}}$
4 oscillate with damping, if $\mathrm{R}^{2} \lt \frac{4 \mathrm{~L}}{\mathrm{C}}$
Alternating Current

155205 In an L-C-R circuit

1 The impedance is equal to reactance
2 The ratio between effective voltage to effective current is called reactance
3 At resonance the resistance is equal to the reactance
4 The current flowing is called wattless current
5 At resonance the net reactance is zero
Alternating Current

155213 The frequency of the output signal becomes times by doubling the value of the capacitance in the LC oscillator circuit.

1 $\frac{1}{\sqrt{2}}$
2 $\sqrt{2}$
3 $\frac{1}{2}$
4 2
Alternating Current

155219 The current in LCR circuit is maximum where-

1 $\mathrm{X}_{\mathrm{L}}=0$
2 $X_{L}=X_{C}$
3 $X_{C}=0$
4 $X_{L}^{2}+X_{C}^{2}=1$
Alternating Current

155233 An $L-C-R$ circuit contains $R=50 \Omega, L=1 \mathrm{mH}$ and $\mathrm{C}=0.1 \mu \mathrm{F}$. The impedance of the circuit will be minimum for a frequency of

1 $\frac{10^{5}}{2 \pi} \mathrm{Hz}$
2 $\frac{10^{6}}{2 \pi} \mathrm{Hz}$
3 $2 \pi \times 10^{5} \mathrm{~Hz}$
4 $2 \pi \times 10^{6} \mathrm{~Hz}$