02. A.C. Circuit (L-C-R, LC Circuit)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Alternating Current

155252 The power loss in an A.C circuit will be minimum, when

1 resistance is high, inductance is high
2 resistance is high, inductance is low
3 resistance is low, inductance is high
4 none of these
Alternating Current

155254 A series LCR circuit is tuned to resonance. The impedance of the circuit at resonance is

1 $\left[\mathrm{R}^{2}+\left(\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}\right)^{2}\right]^{1 / 2}$
2 $\left[\mathrm{R}^{2}+(\omega \mathrm{L})^{2}+\left(\frac{1}{\omega \mathrm{C}}\right)^{2}\right]^{1 / 2}$
3 $\left[\mathrm{R}^{2}+\left(\frac{1}{\omega \mathrm{C}}-\omega \mathrm{L}\right)^{2}\right]^{1 / 2}$
4 $\mathrm{R}$
Alternating Current

155256 What is the resonance frequency of a driven LCR oscillator?

1 $\frac{1}{\mathrm{LC}}$
2 $\frac{1}{2 \pi \mathrm{LC}}$
3 $(\mathrm{LC})^{-1 / 2}$
4 $(2 \pi \mathrm{LC})^{-1 / 2}$
Alternating Current

155276 For a series LCR circuit, the power loss at resonance is

1 $\frac{\mathrm{V}^{2}}{\left(\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}\right)}$
2 $I^{2} \mathrm{C} \omega$
3 $I^{2} R$
4 $\frac{\mathrm{V}^{2}}{\omega \mathrm{C}}$
Alternating Current

155252 The power loss in an A.C circuit will be minimum, when

1 resistance is high, inductance is high
2 resistance is high, inductance is low
3 resistance is low, inductance is high
4 none of these
Alternating Current

155254 A series LCR circuit is tuned to resonance. The impedance of the circuit at resonance is

1 $\left[\mathrm{R}^{2}+\left(\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}\right)^{2}\right]^{1 / 2}$
2 $\left[\mathrm{R}^{2}+(\omega \mathrm{L})^{2}+\left(\frac{1}{\omega \mathrm{C}}\right)^{2}\right]^{1 / 2}$
3 $\left[\mathrm{R}^{2}+\left(\frac{1}{\omega \mathrm{C}}-\omega \mathrm{L}\right)^{2}\right]^{1 / 2}$
4 $\mathrm{R}$
Alternating Current

155256 What is the resonance frequency of a driven LCR oscillator?

1 $\frac{1}{\mathrm{LC}}$
2 $\frac{1}{2 \pi \mathrm{LC}}$
3 $(\mathrm{LC})^{-1 / 2}$
4 $(2 \pi \mathrm{LC})^{-1 / 2}$
Alternating Current

155276 For a series LCR circuit, the power loss at resonance is

1 $\frac{\mathrm{V}^{2}}{\left(\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}\right)}$
2 $I^{2} \mathrm{C} \omega$
3 $I^{2} R$
4 $\frac{\mathrm{V}^{2}}{\omega \mathrm{C}}$
Alternating Current

155252 The power loss in an A.C circuit will be minimum, when

1 resistance is high, inductance is high
2 resistance is high, inductance is low
3 resistance is low, inductance is high
4 none of these
Alternating Current

155254 A series LCR circuit is tuned to resonance. The impedance of the circuit at resonance is

1 $\left[\mathrm{R}^{2}+\left(\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}\right)^{2}\right]^{1 / 2}$
2 $\left[\mathrm{R}^{2}+(\omega \mathrm{L})^{2}+\left(\frac{1}{\omega \mathrm{C}}\right)^{2}\right]^{1 / 2}$
3 $\left[\mathrm{R}^{2}+\left(\frac{1}{\omega \mathrm{C}}-\omega \mathrm{L}\right)^{2}\right]^{1 / 2}$
4 $\mathrm{R}$
Alternating Current

155256 What is the resonance frequency of a driven LCR oscillator?

1 $\frac{1}{\mathrm{LC}}$
2 $\frac{1}{2 \pi \mathrm{LC}}$
3 $(\mathrm{LC})^{-1 / 2}$
4 $(2 \pi \mathrm{LC})^{-1 / 2}$
Alternating Current

155276 For a series LCR circuit, the power loss at resonance is

1 $\frac{\mathrm{V}^{2}}{\left(\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}\right)}$
2 $I^{2} \mathrm{C} \omega$
3 $I^{2} R$
4 $\frac{\mathrm{V}^{2}}{\omega \mathrm{C}}$
Alternating Current

155252 The power loss in an A.C circuit will be minimum, when

1 resistance is high, inductance is high
2 resistance is high, inductance is low
3 resistance is low, inductance is high
4 none of these
Alternating Current

155254 A series LCR circuit is tuned to resonance. The impedance of the circuit at resonance is

1 $\left[\mathrm{R}^{2}+\left(\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}\right)^{2}\right]^{1 / 2}$
2 $\left[\mathrm{R}^{2}+(\omega \mathrm{L})^{2}+\left(\frac{1}{\omega \mathrm{C}}\right)^{2}\right]^{1 / 2}$
3 $\left[\mathrm{R}^{2}+\left(\frac{1}{\omega \mathrm{C}}-\omega \mathrm{L}\right)^{2}\right]^{1 / 2}$
4 $\mathrm{R}$
Alternating Current

155256 What is the resonance frequency of a driven LCR oscillator?

1 $\frac{1}{\mathrm{LC}}$
2 $\frac{1}{2 \pi \mathrm{LC}}$
3 $(\mathrm{LC})^{-1 / 2}$
4 $(2 \pi \mathrm{LC})^{-1 / 2}$
Alternating Current

155276 For a series LCR circuit, the power loss at resonance is

1 $\frac{\mathrm{V}^{2}}{\left(\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}\right)}$
2 $I^{2} \mathrm{C} \omega$
3 $I^{2} R$
4 $\frac{\mathrm{V}^{2}}{\omega \mathrm{C}}$