148334
When a system is taken from state $i$ to state $f$ along path ia $f$ in the figure, the heat absorbed $Q=50$ cal and the work done $W=20$ cal. If $W$ $=-13$ cal for the return path $f i, Q$ for this path is
148338
A gas system is taken through the thermodynamic cyclic process $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ as shown below. The amount of heat transfer
1 $-\mathrm{P} \frac{\mathrm{V}}{2}$
2 PV
3 $\frac{\mathrm{PV}}{2}$
4 $\frac{-3 \mathrm{PV}}{2}$
Explanation:
B First law of thermodynamics $\Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{W}$ For a cyclic process internal energy is zero $\Delta \mathrm{U}=0$ Now, the first law of thermodynamics change into Joule's law $\therefore \quad \Delta \mathrm{Q}=\Delta \mathrm{W}$ Therefore, workdone under $\mathrm{P}-\mathrm{V}$ diagram represent area under the curve. $\Delta \mathrm{Q}=\frac{1}{2} \times \mathrm{P} \times \mathrm{V}$ $\Delta \mathrm{Q}=\frac{\mathrm{PV}}{2}$
148334
When a system is taken from state $i$ to state $f$ along path ia $f$ in the figure, the heat absorbed $Q=50$ cal and the work done $W=20$ cal. If $W$ $=-13$ cal for the return path $f i, Q$ for this path is
148338
A gas system is taken through the thermodynamic cyclic process $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ as shown below. The amount of heat transfer
1 $-\mathrm{P} \frac{\mathrm{V}}{2}$
2 PV
3 $\frac{\mathrm{PV}}{2}$
4 $\frac{-3 \mathrm{PV}}{2}$
Explanation:
B First law of thermodynamics $\Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{W}$ For a cyclic process internal energy is zero $\Delta \mathrm{U}=0$ Now, the first law of thermodynamics change into Joule's law $\therefore \quad \Delta \mathrm{Q}=\Delta \mathrm{W}$ Therefore, workdone under $\mathrm{P}-\mathrm{V}$ diagram represent area under the curve. $\Delta \mathrm{Q}=\frac{1}{2} \times \mathrm{P} \times \mathrm{V}$ $\Delta \mathrm{Q}=\frac{\mathrm{PV}}{2}$
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Thermodynamics
148334
When a system is taken from state $i$ to state $f$ along path ia $f$ in the figure, the heat absorbed $Q=50$ cal and the work done $W=20$ cal. If $W$ $=-13$ cal for the return path $f i, Q$ for this path is
148338
A gas system is taken through the thermodynamic cyclic process $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ as shown below. The amount of heat transfer
1 $-\mathrm{P} \frac{\mathrm{V}}{2}$
2 PV
3 $\frac{\mathrm{PV}}{2}$
4 $\frac{-3 \mathrm{PV}}{2}$
Explanation:
B First law of thermodynamics $\Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{W}$ For a cyclic process internal energy is zero $\Delta \mathrm{U}=0$ Now, the first law of thermodynamics change into Joule's law $\therefore \quad \Delta \mathrm{Q}=\Delta \mathrm{W}$ Therefore, workdone under $\mathrm{P}-\mathrm{V}$ diagram represent area under the curve. $\Delta \mathrm{Q}=\frac{1}{2} \times \mathrm{P} \times \mathrm{V}$ $\Delta \mathrm{Q}=\frac{\mathrm{PV}}{2}$
148334
When a system is taken from state $i$ to state $f$ along path ia $f$ in the figure, the heat absorbed $Q=50$ cal and the work done $W=20$ cal. If $W$ $=-13$ cal for the return path $f i, Q$ for this path is
148338
A gas system is taken through the thermodynamic cyclic process $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ as shown below. The amount of heat transfer
1 $-\mathrm{P} \frac{\mathrm{V}}{2}$
2 PV
3 $\frac{\mathrm{PV}}{2}$
4 $\frac{-3 \mathrm{PV}}{2}$
Explanation:
B First law of thermodynamics $\Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{W}$ For a cyclic process internal energy is zero $\Delta \mathrm{U}=0$ Now, the first law of thermodynamics change into Joule's law $\therefore \quad \Delta \mathrm{Q}=\Delta \mathrm{W}$ Therefore, workdone under $\mathrm{P}-\mathrm{V}$ diagram represent area under the curve. $\Delta \mathrm{Q}=\frac{1}{2} \times \mathrm{P} \times \mathrm{V}$ $\Delta \mathrm{Q}=\frac{\mathrm{PV}}{2}$