02. Thermodynamics Process
Thermodynamics

148334 When a system is taken from state $i$ to state $f$ along path ia $f$ in the figure, the heat absorbed $Q=50$ cal and the work done $W=20$ cal. If $W$ $=-13$ cal for the return path $f i, Q$ for this path is

1 $17 \mathrm{cal}$
2 $-17 \mathrm{cal}$
3 $43 \mathrm{cal}$
4 $-43 \mathrm{cal}$
Thermodynamics

148335 The ratio of the slopes of isothermal and adiabatic curves is

1 1
2 $\gamma$
3 $\frac{1}{\gamma}$
4 $\frac{3}{2}$
Thermodynamics

148336 One mole of an diatomic ideal gas undergoes a process shown in P-V diagram. The total heat given to the gas $(\ell \mathbf{n} 2=0.7)$ is

1 $2.5 \mathrm{P}_{0} \mathrm{~V}_{0}$
2 $3.9 \mathrm{P}_{0} \mathrm{~V}_{0}$
3 $1.1 \mathrm{P}_{0} \mathrm{~V}_{0}$
4 $1.4 \mathrm{P}_{0} \mathrm{~V}_{0}$
Thermodynamics

148338 A gas system is taken through the thermodynamic cyclic process $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ as shown below. The amount of heat transfer

1 $-\mathrm{P} \frac{\mathrm{V}}{2}$
2 PV
3 $\frac{\mathrm{PV}}{2}$
4 $\frac{-3 \mathrm{PV}}{2}$
Thermodynamics

148334 When a system is taken from state $i$ to state $f$ along path ia $f$ in the figure, the heat absorbed $Q=50$ cal and the work done $W=20$ cal. If $W$ $=-13$ cal for the return path $f i, Q$ for this path is

1 $17 \mathrm{cal}$
2 $-17 \mathrm{cal}$
3 $43 \mathrm{cal}$
4 $-43 \mathrm{cal}$
Thermodynamics

148335 The ratio of the slopes of isothermal and adiabatic curves is

1 1
2 $\gamma$
3 $\frac{1}{\gamma}$
4 $\frac{3}{2}$
Thermodynamics

148336 One mole of an diatomic ideal gas undergoes a process shown in P-V diagram. The total heat given to the gas $(\ell \mathbf{n} 2=0.7)$ is

1 $2.5 \mathrm{P}_{0} \mathrm{~V}_{0}$
2 $3.9 \mathrm{P}_{0} \mathrm{~V}_{0}$
3 $1.1 \mathrm{P}_{0} \mathrm{~V}_{0}$
4 $1.4 \mathrm{P}_{0} \mathrm{~V}_{0}$
Thermodynamics

148338 A gas system is taken through the thermodynamic cyclic process $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ as shown below. The amount of heat transfer

1 $-\mathrm{P} \frac{\mathrm{V}}{2}$
2 PV
3 $\frac{\mathrm{PV}}{2}$
4 $\frac{-3 \mathrm{PV}}{2}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Thermodynamics

148334 When a system is taken from state $i$ to state $f$ along path ia $f$ in the figure, the heat absorbed $Q=50$ cal and the work done $W=20$ cal. If $W$ $=-13$ cal for the return path $f i, Q$ for this path is

1 $17 \mathrm{cal}$
2 $-17 \mathrm{cal}$
3 $43 \mathrm{cal}$
4 $-43 \mathrm{cal}$
Thermodynamics

148335 The ratio of the slopes of isothermal and adiabatic curves is

1 1
2 $\gamma$
3 $\frac{1}{\gamma}$
4 $\frac{3}{2}$
Thermodynamics

148336 One mole of an diatomic ideal gas undergoes a process shown in P-V diagram. The total heat given to the gas $(\ell \mathbf{n} 2=0.7)$ is

1 $2.5 \mathrm{P}_{0} \mathrm{~V}_{0}$
2 $3.9 \mathrm{P}_{0} \mathrm{~V}_{0}$
3 $1.1 \mathrm{P}_{0} \mathrm{~V}_{0}$
4 $1.4 \mathrm{P}_{0} \mathrm{~V}_{0}$
Thermodynamics

148338 A gas system is taken through the thermodynamic cyclic process $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ as shown below. The amount of heat transfer

1 $-\mathrm{P} \frac{\mathrm{V}}{2}$
2 PV
3 $\frac{\mathrm{PV}}{2}$
4 $\frac{-3 \mathrm{PV}}{2}$
Thermodynamics

148334 When a system is taken from state $i$ to state $f$ along path ia $f$ in the figure, the heat absorbed $Q=50$ cal and the work done $W=20$ cal. If $W$ $=-13$ cal for the return path $f i, Q$ for this path is

1 $17 \mathrm{cal}$
2 $-17 \mathrm{cal}$
3 $43 \mathrm{cal}$
4 $-43 \mathrm{cal}$
Thermodynamics

148335 The ratio of the slopes of isothermal and adiabatic curves is

1 1
2 $\gamma$
3 $\frac{1}{\gamma}$
4 $\frac{3}{2}$
Thermodynamics

148336 One mole of an diatomic ideal gas undergoes a process shown in P-V diagram. The total heat given to the gas $(\ell \mathbf{n} 2=0.7)$ is

1 $2.5 \mathrm{P}_{0} \mathrm{~V}_{0}$
2 $3.9 \mathrm{P}_{0} \mathrm{~V}_{0}$
3 $1.1 \mathrm{P}_{0} \mathrm{~V}_{0}$
4 $1.4 \mathrm{P}_{0} \mathrm{~V}_{0}$
Thermodynamics

148338 A gas system is taken through the thermodynamic cyclic process $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ as shown below. The amount of heat transfer

1 $-\mathrm{P} \frac{\mathrm{V}}{2}$
2 PV
3 $\frac{\mathrm{PV}}{2}$
4 $\frac{-3 \mathrm{PV}}{2}$