148330
Three identical silver cups $A, B$ and $C$ contain three liquids of same densities at same temperature higher than the temperature of the surrounding. If the ratio of their specific heat capacities is $1: 2: 4$, then
1 A cools faster than $\mathrm{B}$ but slower than $\mathrm{C}$
2 $\mathrm{B}$ cools faster than $\mathrm{C}$ but slower than $\mathrm{A}$
3 A cools faster than $\mathrm{B}$ and $\mathrm{C}$
4 $\mathrm{C}$ cools faster than $\mathrm{B}$ and $\mathrm{A}$
5 B cools faster than A and C
Explanation:
B Q $=\mathrm{MC}_{\mathrm{p}} \Delta \mathrm{T}=$ constant $\mathrm{C}_{\mathrm{p}} \uparrow, \Delta \mathrm{T} \downarrow$ So, the rate of cooling will decreases. $\left(\mathrm{C}_{\mathrm{p}}\right)_{\mathrm{A}}:\left(\mathrm{C}_{\mathrm{p}}\right)_{\mathrm{B}}:\left(\mathrm{C}_{\mathrm{p}}\right)_{\mathrm{C}}=1: 2: 4$ $(\Delta \mathrm{T})_{\mathrm{A}}:(\Delta \mathrm{T})_{\mathrm{B}}:(\Delta \mathrm{T})_{\mathrm{C}}=4: 2: 1$ It means, A cools faster than $\mathrm{B}$ cools faster than $\mathrm{C}$. So, B cools faster then $\mathrm{C}$ but slower than $\mathrm{A}$. So, A cools faster than B and C.
Kerala CEE 04.07.2022
Thermodynamics
148331
Temperature of cold junction in a thermocouple is $10^{\circ} \mathrm{C}$ and neutral temperature is $270^{\circ} \mathrm{C}$, then the temperature of inversion is
1 $540^{\circ} \mathrm{C}$
2 $530^{\circ} \mathrm{C}$
3 $280^{\circ} \mathrm{C}$
4 $260^{\circ} \mathrm{C}$
Explanation:
B Given, Temperature at neutral junction $\left(T_{n}\right)=270^{\circ} \mathrm{C}$ Temperature at cold junction $\left(\mathrm{T}_{\mathrm{c}}\right)=10^{\circ} \mathrm{C}$ Temperature at inversion junction $\left(\mathrm{T}_{\mathrm{i}}\right)=$ ? We know that, $\mathrm{T}_{\mathrm{n}}-\mathrm{T}_{\mathrm{c}}=\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{n}}$ $270-10=\mathrm{T}_{\mathrm{i}}-270$ $270+270-10=\mathrm{T}_{\mathrm{i}}$ $\mathrm{Ti}=530^{\circ} \mathrm{C}$
EAMCET-2007
Thermodynamics
148332
The heat supplied to gas in the cyclic process ABCA (shown in figure) is
1 $-2 \mathrm{~J}$
2 $4 \mathrm{~J}$
3 $-4 \mathrm{~J}$
4 $8 \mathrm{~J}$
Explanation:
C Work done $=$ Area of $\triangle \mathrm{BCA}$ $=-\frac{1}{2} \times(5-1) \times(3-1)$ $=-\frac{1}{2} \times 4 \times 2$ $=-4 \mathrm{~J}$ (-)ve sign shows the process is in anticlockwise and heat absorbing device.
UP CPMT-2001
Thermodynamics
148333
The efficiency of an ideal gas with adiabatic exponent $\gamma$ for the shown cyclic process would be
148330
Three identical silver cups $A, B$ and $C$ contain three liquids of same densities at same temperature higher than the temperature of the surrounding. If the ratio of their specific heat capacities is $1: 2: 4$, then
1 A cools faster than $\mathrm{B}$ but slower than $\mathrm{C}$
2 $\mathrm{B}$ cools faster than $\mathrm{C}$ but slower than $\mathrm{A}$
3 A cools faster than $\mathrm{B}$ and $\mathrm{C}$
4 $\mathrm{C}$ cools faster than $\mathrm{B}$ and $\mathrm{A}$
5 B cools faster than A and C
Explanation:
B Q $=\mathrm{MC}_{\mathrm{p}} \Delta \mathrm{T}=$ constant $\mathrm{C}_{\mathrm{p}} \uparrow, \Delta \mathrm{T} \downarrow$ So, the rate of cooling will decreases. $\left(\mathrm{C}_{\mathrm{p}}\right)_{\mathrm{A}}:\left(\mathrm{C}_{\mathrm{p}}\right)_{\mathrm{B}}:\left(\mathrm{C}_{\mathrm{p}}\right)_{\mathrm{C}}=1: 2: 4$ $(\Delta \mathrm{T})_{\mathrm{A}}:(\Delta \mathrm{T})_{\mathrm{B}}:(\Delta \mathrm{T})_{\mathrm{C}}=4: 2: 1$ It means, A cools faster than $\mathrm{B}$ cools faster than $\mathrm{C}$. So, B cools faster then $\mathrm{C}$ but slower than $\mathrm{A}$. So, A cools faster than B and C.
Kerala CEE 04.07.2022
Thermodynamics
148331
Temperature of cold junction in a thermocouple is $10^{\circ} \mathrm{C}$ and neutral temperature is $270^{\circ} \mathrm{C}$, then the temperature of inversion is
1 $540^{\circ} \mathrm{C}$
2 $530^{\circ} \mathrm{C}$
3 $280^{\circ} \mathrm{C}$
4 $260^{\circ} \mathrm{C}$
Explanation:
B Given, Temperature at neutral junction $\left(T_{n}\right)=270^{\circ} \mathrm{C}$ Temperature at cold junction $\left(\mathrm{T}_{\mathrm{c}}\right)=10^{\circ} \mathrm{C}$ Temperature at inversion junction $\left(\mathrm{T}_{\mathrm{i}}\right)=$ ? We know that, $\mathrm{T}_{\mathrm{n}}-\mathrm{T}_{\mathrm{c}}=\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{n}}$ $270-10=\mathrm{T}_{\mathrm{i}}-270$ $270+270-10=\mathrm{T}_{\mathrm{i}}$ $\mathrm{Ti}=530^{\circ} \mathrm{C}$
EAMCET-2007
Thermodynamics
148332
The heat supplied to gas in the cyclic process ABCA (shown in figure) is
1 $-2 \mathrm{~J}$
2 $4 \mathrm{~J}$
3 $-4 \mathrm{~J}$
4 $8 \mathrm{~J}$
Explanation:
C Work done $=$ Area of $\triangle \mathrm{BCA}$ $=-\frac{1}{2} \times(5-1) \times(3-1)$ $=-\frac{1}{2} \times 4 \times 2$ $=-4 \mathrm{~J}$ (-)ve sign shows the process is in anticlockwise and heat absorbing device.
UP CPMT-2001
Thermodynamics
148333
The efficiency of an ideal gas with adiabatic exponent $\gamma$ for the shown cyclic process would be
148330
Three identical silver cups $A, B$ and $C$ contain three liquids of same densities at same temperature higher than the temperature of the surrounding. If the ratio of their specific heat capacities is $1: 2: 4$, then
1 A cools faster than $\mathrm{B}$ but slower than $\mathrm{C}$
2 $\mathrm{B}$ cools faster than $\mathrm{C}$ but slower than $\mathrm{A}$
3 A cools faster than $\mathrm{B}$ and $\mathrm{C}$
4 $\mathrm{C}$ cools faster than $\mathrm{B}$ and $\mathrm{A}$
5 B cools faster than A and C
Explanation:
B Q $=\mathrm{MC}_{\mathrm{p}} \Delta \mathrm{T}=$ constant $\mathrm{C}_{\mathrm{p}} \uparrow, \Delta \mathrm{T} \downarrow$ So, the rate of cooling will decreases. $\left(\mathrm{C}_{\mathrm{p}}\right)_{\mathrm{A}}:\left(\mathrm{C}_{\mathrm{p}}\right)_{\mathrm{B}}:\left(\mathrm{C}_{\mathrm{p}}\right)_{\mathrm{C}}=1: 2: 4$ $(\Delta \mathrm{T})_{\mathrm{A}}:(\Delta \mathrm{T})_{\mathrm{B}}:(\Delta \mathrm{T})_{\mathrm{C}}=4: 2: 1$ It means, A cools faster than $\mathrm{B}$ cools faster than $\mathrm{C}$. So, B cools faster then $\mathrm{C}$ but slower than $\mathrm{A}$. So, A cools faster than B and C.
Kerala CEE 04.07.2022
Thermodynamics
148331
Temperature of cold junction in a thermocouple is $10^{\circ} \mathrm{C}$ and neutral temperature is $270^{\circ} \mathrm{C}$, then the temperature of inversion is
1 $540^{\circ} \mathrm{C}$
2 $530^{\circ} \mathrm{C}$
3 $280^{\circ} \mathrm{C}$
4 $260^{\circ} \mathrm{C}$
Explanation:
B Given, Temperature at neutral junction $\left(T_{n}\right)=270^{\circ} \mathrm{C}$ Temperature at cold junction $\left(\mathrm{T}_{\mathrm{c}}\right)=10^{\circ} \mathrm{C}$ Temperature at inversion junction $\left(\mathrm{T}_{\mathrm{i}}\right)=$ ? We know that, $\mathrm{T}_{\mathrm{n}}-\mathrm{T}_{\mathrm{c}}=\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{n}}$ $270-10=\mathrm{T}_{\mathrm{i}}-270$ $270+270-10=\mathrm{T}_{\mathrm{i}}$ $\mathrm{Ti}=530^{\circ} \mathrm{C}$
EAMCET-2007
Thermodynamics
148332
The heat supplied to gas in the cyclic process ABCA (shown in figure) is
1 $-2 \mathrm{~J}$
2 $4 \mathrm{~J}$
3 $-4 \mathrm{~J}$
4 $8 \mathrm{~J}$
Explanation:
C Work done $=$ Area of $\triangle \mathrm{BCA}$ $=-\frac{1}{2} \times(5-1) \times(3-1)$ $=-\frac{1}{2} \times 4 \times 2$ $=-4 \mathrm{~J}$ (-)ve sign shows the process is in anticlockwise and heat absorbing device.
UP CPMT-2001
Thermodynamics
148333
The efficiency of an ideal gas with adiabatic exponent $\gamma$ for the shown cyclic process would be
148330
Three identical silver cups $A, B$ and $C$ contain three liquids of same densities at same temperature higher than the temperature of the surrounding. If the ratio of their specific heat capacities is $1: 2: 4$, then
1 A cools faster than $\mathrm{B}$ but slower than $\mathrm{C}$
2 $\mathrm{B}$ cools faster than $\mathrm{C}$ but slower than $\mathrm{A}$
3 A cools faster than $\mathrm{B}$ and $\mathrm{C}$
4 $\mathrm{C}$ cools faster than $\mathrm{B}$ and $\mathrm{A}$
5 B cools faster than A and C
Explanation:
B Q $=\mathrm{MC}_{\mathrm{p}} \Delta \mathrm{T}=$ constant $\mathrm{C}_{\mathrm{p}} \uparrow, \Delta \mathrm{T} \downarrow$ So, the rate of cooling will decreases. $\left(\mathrm{C}_{\mathrm{p}}\right)_{\mathrm{A}}:\left(\mathrm{C}_{\mathrm{p}}\right)_{\mathrm{B}}:\left(\mathrm{C}_{\mathrm{p}}\right)_{\mathrm{C}}=1: 2: 4$ $(\Delta \mathrm{T})_{\mathrm{A}}:(\Delta \mathrm{T})_{\mathrm{B}}:(\Delta \mathrm{T})_{\mathrm{C}}=4: 2: 1$ It means, A cools faster than $\mathrm{B}$ cools faster than $\mathrm{C}$. So, B cools faster then $\mathrm{C}$ but slower than $\mathrm{A}$. So, A cools faster than B and C.
Kerala CEE 04.07.2022
Thermodynamics
148331
Temperature of cold junction in a thermocouple is $10^{\circ} \mathrm{C}$ and neutral temperature is $270^{\circ} \mathrm{C}$, then the temperature of inversion is
1 $540^{\circ} \mathrm{C}$
2 $530^{\circ} \mathrm{C}$
3 $280^{\circ} \mathrm{C}$
4 $260^{\circ} \mathrm{C}$
Explanation:
B Given, Temperature at neutral junction $\left(T_{n}\right)=270^{\circ} \mathrm{C}$ Temperature at cold junction $\left(\mathrm{T}_{\mathrm{c}}\right)=10^{\circ} \mathrm{C}$ Temperature at inversion junction $\left(\mathrm{T}_{\mathrm{i}}\right)=$ ? We know that, $\mathrm{T}_{\mathrm{n}}-\mathrm{T}_{\mathrm{c}}=\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{n}}$ $270-10=\mathrm{T}_{\mathrm{i}}-270$ $270+270-10=\mathrm{T}_{\mathrm{i}}$ $\mathrm{Ti}=530^{\circ} \mathrm{C}$
EAMCET-2007
Thermodynamics
148332
The heat supplied to gas in the cyclic process ABCA (shown in figure) is
1 $-2 \mathrm{~J}$
2 $4 \mathrm{~J}$
3 $-4 \mathrm{~J}$
4 $8 \mathrm{~J}$
Explanation:
C Work done $=$ Area of $\triangle \mathrm{BCA}$ $=-\frac{1}{2} \times(5-1) \times(3-1)$ $=-\frac{1}{2} \times 4 \times 2$ $=-4 \mathrm{~J}$ (-)ve sign shows the process is in anticlockwise and heat absorbing device.
UP CPMT-2001
Thermodynamics
148333
The efficiency of an ideal gas with adiabatic exponent $\gamma$ for the shown cyclic process would be