00. Electrode Potential
ELECTROCHEMISTRY

275988 The standard reduction potential for $\mathrm{Cu}^{2+} / \mathrm{Cu}$ is +0.34 . Calculate the reduction potential at $\mathrm{pH}=14$ for the above couple. $\left(\mathrm{K}_{\mathrm{sp}} \mathrm{Cu}(\mathrm{OH})_{2}=\right.$ $1 \times 10^{-19}$ )

1 $-0.22 \mathrm{~V}$
2 $+0.22 \mathrm{~V}$
3 $-0.44 \mathrm{~V}$
4 $+0.44 \mathrm{~V}$
ELECTROCHEMISTRY

275989 For hydrogen-oxygen fuel cell, the cell reaction
is $\quad 2 \mathrm{H}_2(\mathrm{~g})+\mathrm{O}_2(\mathrm{~g}) \rightarrow 2 \mathrm{H}_2 \mathrm{O}(\mathrm{I})$
If $\Delta G_{\mathrm{f}}^0\left(\mathrm{H}_2 \mathrm{O}\right)=-237.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$, then emf of this cell is

1 $+2.46 \mathrm{~V}$
2 $-2.46 \mathrm{~V}$
3 $+1.23 \mathrm{~V}$
4 $-1.23 \mathrm{~V}$
ELECTROCHEMISTRY

275990 $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} ; \mathrm{E}^{\circ}=1.51$ $\mathrm{V}$
$\mathrm{MnO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O} ; \mathrm{E}^{\circ}=1.23 \mathrm{~V}$ $\mathrm{E}^{\circ}{ }_{\mathbf{M n O}_{4}^{-} \mid \mathbf{M n O}_{2}}$ is

1 $1.70 \mathrm{~V}$
2 $0.91 \mathrm{~V}$
3 $1.37 \mathrm{~V}$
4 $0.548 \mathrm{~V}$
ELECTROCHEMISTRY

275991 For the cell reaction
$2 \mathrm{Ce}^{+4}+\mathrm{Co} \rightarrow 2 \mathrm{Ce}^{3+}+\mathrm{Co}^{2+} ; \mathrm{E}_{\text {cell }}^{\circ}=1.89$
$\text { and } \mathrm{E}_{\mathrm{Co}^{2+} / \mathrm{Co}}=-0.28$

1 $0.28 \mathrm{~V}$
2 $1.61 \mathrm{~V}$
3 $2.17 \mathrm{~V}$
4 $5.29 \mathrm{~V}$
ELECTROCHEMISTRY

275777 The element with highest standard reduction potential (in Volt) $\left[\mathrm{M}^{2+} \rightarrow \mathrm{M}\right]$ among the $\mathrm{I}^{\text {st }}$ row of transition elements is

1 $\mathrm{Ti}$
2 $\mathrm{Ni}$
3 $\mathrm{Cr}$
4 $\mathrm{Cu}$
ELECTROCHEMISTRY

275988 The standard reduction potential for $\mathrm{Cu}^{2+} / \mathrm{Cu}$ is +0.34 . Calculate the reduction potential at $\mathrm{pH}=14$ for the above couple. $\left(\mathrm{K}_{\mathrm{sp}} \mathrm{Cu}(\mathrm{OH})_{2}=\right.$ $1 \times 10^{-19}$ )

1 $-0.22 \mathrm{~V}$
2 $+0.22 \mathrm{~V}$
3 $-0.44 \mathrm{~V}$
4 $+0.44 \mathrm{~V}$
ELECTROCHEMISTRY

275989 For hydrogen-oxygen fuel cell, the cell reaction
is $\quad 2 \mathrm{H}_2(\mathrm{~g})+\mathrm{O}_2(\mathrm{~g}) \rightarrow 2 \mathrm{H}_2 \mathrm{O}(\mathrm{I})$
If $\Delta G_{\mathrm{f}}^0\left(\mathrm{H}_2 \mathrm{O}\right)=-237.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$, then emf of this cell is

1 $+2.46 \mathrm{~V}$
2 $-2.46 \mathrm{~V}$
3 $+1.23 \mathrm{~V}$
4 $-1.23 \mathrm{~V}$
ELECTROCHEMISTRY

275990 $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} ; \mathrm{E}^{\circ}=1.51$ $\mathrm{V}$
$\mathrm{MnO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O} ; \mathrm{E}^{\circ}=1.23 \mathrm{~V}$ $\mathrm{E}^{\circ}{ }_{\mathbf{M n O}_{4}^{-} \mid \mathbf{M n O}_{2}}$ is

1 $1.70 \mathrm{~V}$
2 $0.91 \mathrm{~V}$
3 $1.37 \mathrm{~V}$
4 $0.548 \mathrm{~V}$
ELECTROCHEMISTRY

275991 For the cell reaction
$2 \mathrm{Ce}^{+4}+\mathrm{Co} \rightarrow 2 \mathrm{Ce}^{3+}+\mathrm{Co}^{2+} ; \mathrm{E}_{\text {cell }}^{\circ}=1.89$
$\text { and } \mathrm{E}_{\mathrm{Co}^{2+} / \mathrm{Co}}=-0.28$

1 $0.28 \mathrm{~V}$
2 $1.61 \mathrm{~V}$
3 $2.17 \mathrm{~V}$
4 $5.29 \mathrm{~V}$
ELECTROCHEMISTRY

275777 The element with highest standard reduction potential (in Volt) $\left[\mathrm{M}^{2+} \rightarrow \mathrm{M}\right]$ among the $\mathrm{I}^{\text {st }}$ row of transition elements is

1 $\mathrm{Ti}$
2 $\mathrm{Ni}$
3 $\mathrm{Cr}$
4 $\mathrm{Cu}$
ELECTROCHEMISTRY

275988 The standard reduction potential for $\mathrm{Cu}^{2+} / \mathrm{Cu}$ is +0.34 . Calculate the reduction potential at $\mathrm{pH}=14$ for the above couple. $\left(\mathrm{K}_{\mathrm{sp}} \mathrm{Cu}(\mathrm{OH})_{2}=\right.$ $1 \times 10^{-19}$ )

1 $-0.22 \mathrm{~V}$
2 $+0.22 \mathrm{~V}$
3 $-0.44 \mathrm{~V}$
4 $+0.44 \mathrm{~V}$
ELECTROCHEMISTRY

275989 For hydrogen-oxygen fuel cell, the cell reaction
is $\quad 2 \mathrm{H}_2(\mathrm{~g})+\mathrm{O}_2(\mathrm{~g}) \rightarrow 2 \mathrm{H}_2 \mathrm{O}(\mathrm{I})$
If $\Delta G_{\mathrm{f}}^0\left(\mathrm{H}_2 \mathrm{O}\right)=-237.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$, then emf of this cell is

1 $+2.46 \mathrm{~V}$
2 $-2.46 \mathrm{~V}$
3 $+1.23 \mathrm{~V}$
4 $-1.23 \mathrm{~V}$
ELECTROCHEMISTRY

275990 $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} ; \mathrm{E}^{\circ}=1.51$ $\mathrm{V}$
$\mathrm{MnO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O} ; \mathrm{E}^{\circ}=1.23 \mathrm{~V}$ $\mathrm{E}^{\circ}{ }_{\mathbf{M n O}_{4}^{-} \mid \mathbf{M n O}_{2}}$ is

1 $1.70 \mathrm{~V}$
2 $0.91 \mathrm{~V}$
3 $1.37 \mathrm{~V}$
4 $0.548 \mathrm{~V}$
ELECTROCHEMISTRY

275991 For the cell reaction
$2 \mathrm{Ce}^{+4}+\mathrm{Co} \rightarrow 2 \mathrm{Ce}^{3+}+\mathrm{Co}^{2+} ; \mathrm{E}_{\text {cell }}^{\circ}=1.89$
$\text { and } \mathrm{E}_{\mathrm{Co}^{2+} / \mathrm{Co}}=-0.28$

1 $0.28 \mathrm{~V}$
2 $1.61 \mathrm{~V}$
3 $2.17 \mathrm{~V}$
4 $5.29 \mathrm{~V}$
ELECTROCHEMISTRY

275777 The element with highest standard reduction potential (in Volt) $\left[\mathrm{M}^{2+} \rightarrow \mathrm{M}\right]$ among the $\mathrm{I}^{\text {st }}$ row of transition elements is

1 $\mathrm{Ti}$
2 $\mathrm{Ni}$
3 $\mathrm{Cr}$
4 $\mathrm{Cu}$
ELECTROCHEMISTRY

275988 The standard reduction potential for $\mathrm{Cu}^{2+} / \mathrm{Cu}$ is +0.34 . Calculate the reduction potential at $\mathrm{pH}=14$ for the above couple. $\left(\mathrm{K}_{\mathrm{sp}} \mathrm{Cu}(\mathrm{OH})_{2}=\right.$ $1 \times 10^{-19}$ )

1 $-0.22 \mathrm{~V}$
2 $+0.22 \mathrm{~V}$
3 $-0.44 \mathrm{~V}$
4 $+0.44 \mathrm{~V}$
ELECTROCHEMISTRY

275989 For hydrogen-oxygen fuel cell, the cell reaction
is $\quad 2 \mathrm{H}_2(\mathrm{~g})+\mathrm{O}_2(\mathrm{~g}) \rightarrow 2 \mathrm{H}_2 \mathrm{O}(\mathrm{I})$
If $\Delta G_{\mathrm{f}}^0\left(\mathrm{H}_2 \mathrm{O}\right)=-237.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$, then emf of this cell is

1 $+2.46 \mathrm{~V}$
2 $-2.46 \mathrm{~V}$
3 $+1.23 \mathrm{~V}$
4 $-1.23 \mathrm{~V}$
ELECTROCHEMISTRY

275990 $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} ; \mathrm{E}^{\circ}=1.51$ $\mathrm{V}$
$\mathrm{MnO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O} ; \mathrm{E}^{\circ}=1.23 \mathrm{~V}$ $\mathrm{E}^{\circ}{ }_{\mathbf{M n O}_{4}^{-} \mid \mathbf{M n O}_{2}}$ is

1 $1.70 \mathrm{~V}$
2 $0.91 \mathrm{~V}$
3 $1.37 \mathrm{~V}$
4 $0.548 \mathrm{~V}$
ELECTROCHEMISTRY

275991 For the cell reaction
$2 \mathrm{Ce}^{+4}+\mathrm{Co} \rightarrow 2 \mathrm{Ce}^{3+}+\mathrm{Co}^{2+} ; \mathrm{E}_{\text {cell }}^{\circ}=1.89$
$\text { and } \mathrm{E}_{\mathrm{Co}^{2+} / \mathrm{Co}}=-0.28$

1 $0.28 \mathrm{~V}$
2 $1.61 \mathrm{~V}$
3 $2.17 \mathrm{~V}$
4 $5.29 \mathrm{~V}$
ELECTROCHEMISTRY

275777 The element with highest standard reduction potential (in Volt) $\left[\mathrm{M}^{2+} \rightarrow \mathrm{M}\right]$ among the $\mathrm{I}^{\text {st }}$ row of transition elements is

1 $\mathrm{Ti}$
2 $\mathrm{Ni}$
3 $\mathrm{Cr}$
4 $\mathrm{Cu}$
ELECTROCHEMISTRY

275988 The standard reduction potential for $\mathrm{Cu}^{2+} / \mathrm{Cu}$ is +0.34 . Calculate the reduction potential at $\mathrm{pH}=14$ for the above couple. $\left(\mathrm{K}_{\mathrm{sp}} \mathrm{Cu}(\mathrm{OH})_{2}=\right.$ $1 \times 10^{-19}$ )

1 $-0.22 \mathrm{~V}$
2 $+0.22 \mathrm{~V}$
3 $-0.44 \mathrm{~V}$
4 $+0.44 \mathrm{~V}$
ELECTROCHEMISTRY

275989 For hydrogen-oxygen fuel cell, the cell reaction
is $\quad 2 \mathrm{H}_2(\mathrm{~g})+\mathrm{O}_2(\mathrm{~g}) \rightarrow 2 \mathrm{H}_2 \mathrm{O}(\mathrm{I})$
If $\Delta G_{\mathrm{f}}^0\left(\mathrm{H}_2 \mathrm{O}\right)=-237.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$, then emf of this cell is

1 $+2.46 \mathrm{~V}$
2 $-2.46 \mathrm{~V}$
3 $+1.23 \mathrm{~V}$
4 $-1.23 \mathrm{~V}$
ELECTROCHEMISTRY

275990 $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} ; \mathrm{E}^{\circ}=1.51$ $\mathrm{V}$
$\mathrm{MnO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O} ; \mathrm{E}^{\circ}=1.23 \mathrm{~V}$ $\mathrm{E}^{\circ}{ }_{\mathbf{M n O}_{4}^{-} \mid \mathbf{M n O}_{2}}$ is

1 $1.70 \mathrm{~V}$
2 $0.91 \mathrm{~V}$
3 $1.37 \mathrm{~V}$
4 $0.548 \mathrm{~V}$
ELECTROCHEMISTRY

275991 For the cell reaction
$2 \mathrm{Ce}^{+4}+\mathrm{Co} \rightarrow 2 \mathrm{Ce}^{3+}+\mathrm{Co}^{2+} ; \mathrm{E}_{\text {cell }}^{\circ}=1.89$
$\text { and } \mathrm{E}_{\mathrm{Co}^{2+} / \mathrm{Co}}=-0.28$

1 $0.28 \mathrm{~V}$
2 $1.61 \mathrm{~V}$
3 $2.17 \mathrm{~V}$
4 $5.29 \mathrm{~V}$
ELECTROCHEMISTRY

275777 The element with highest standard reduction potential (in Volt) $\left[\mathrm{M}^{2+} \rightarrow \mathrm{M}\right]$ among the $\mathrm{I}^{\text {st }}$ row of transition elements is

1 $\mathrm{Ti}$
2 $\mathrm{Ni}$
3 $\mathrm{Cr}$
4 $\mathrm{Cu}$