00. Electrode Potential
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
ELECTROCHEMISTRY

275984 The standard electrode potentials of $\mathbf{A g}^{+} / \mathrm{Ag}$ is $+0.80 \mathrm{~V}$ and $\mathrm{Cu}^{+} / \mathrm{Cu}$ is $+\mathbf{0 . 3 4} \mathrm{V}$. These electrodes are connected through a salt bridge and if :

1 copper electrode acts as a cathode then $\mathrm{E}_{\text {cell }}^{0}$ is $+0.46 \mathrm{~V}$
2 silver electrode acts as anode then $\mathrm{E}_{\text {cell }}^{\mathrm{o}}$ is $-0.34 \mathrm{~V}$
3 copper electrode acts as anode then $\mathrm{E}_{\text {cell }}^{\mathrm{o}}$ is $+0.46 \mathrm{~V}$
4 silver electrode acts as a cathode then $\mathrm{E}_{\text {cell }}^{\mathrm{o}}$ is $-0.34 \mathrm{~V}$
5 silver electrode acts as anode and $\mathrm{E}_{\text {cell }}^{\mathrm{o}}$ is $+1.14 \mathrm{~V}$
ELECTROCHEMISTRY

275985 $4.5 \mathrm{~g}$ of aluminium (at. mass $27 \mathrm{amu}$ ) is deposited at cathode from $\mathrm{Al}^{3+}$ solution by a certain quantity of electric charge. The volume of hydrogen produced at STP from $\mathrm{H}^{+}$ions in solution by the same quantity of electric charge will be

1 $44.8 \mathrm{~L}$
2 $22.4 \mathrm{~L}$
3 $11.2 \mathrm{~L}$
4 $5.6 \mathrm{~L}$
ELECTROCHEMISTRY

275986 The electrode potentials for
$\mathrm{Cu}^{2+}(\mathbf{a q})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}(\mathbf{a q})$
and $\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$
are $+0.15 \mathrm{~V}$ and $+0.50 \mathrm{~V}$, respectively. The value of $\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{0}$ will be:

1 $0.500 \mathrm{~V}$
2 $0.325 \mathrm{~V}$
3 $0.650 \mathrm{~V}$
4 $0.150 \mathrm{~V}$
ELECTROCHEMISTRY

275987 The emf of a particular voltaic cell with the cell reaction $\mathrm{Hg}_{2}^{2+}+\mathrm{H}_{2} \rightleftharpoons 2 \mathrm{Hg}+2 \mathrm{H}^{+}$is $0.65 \mathrm{~V}$. The maximum electrical work of this cell when $0.5 \mathrm{~g}$ of $\mathrm{H}_{2}$ is consumed.

1 $-3.12 \times 10^{4} \mathrm{~J}$
2 $-1.25 \times 10^{5} \mathrm{~J}$
3 $25.0 \times 10^{6} \mathrm{~J}$
4 None
ELECTROCHEMISTRY

275984 The standard electrode potentials of $\mathbf{A g}^{+} / \mathrm{Ag}$ is $+0.80 \mathrm{~V}$ and $\mathrm{Cu}^{+} / \mathrm{Cu}$ is $+\mathbf{0 . 3 4} \mathrm{V}$. These electrodes are connected through a salt bridge and if :

1 copper electrode acts as a cathode then $\mathrm{E}_{\text {cell }}^{0}$ is $+0.46 \mathrm{~V}$
2 silver electrode acts as anode then $\mathrm{E}_{\text {cell }}^{\mathrm{o}}$ is $-0.34 \mathrm{~V}$
3 copper electrode acts as anode then $\mathrm{E}_{\text {cell }}^{\mathrm{o}}$ is $+0.46 \mathrm{~V}$
4 silver electrode acts as a cathode then $\mathrm{E}_{\text {cell }}^{\mathrm{o}}$ is $-0.34 \mathrm{~V}$
5 silver electrode acts as anode and $\mathrm{E}_{\text {cell }}^{\mathrm{o}}$ is $+1.14 \mathrm{~V}$
ELECTROCHEMISTRY

275985 $4.5 \mathrm{~g}$ of aluminium (at. mass $27 \mathrm{amu}$ ) is deposited at cathode from $\mathrm{Al}^{3+}$ solution by a certain quantity of electric charge. The volume of hydrogen produced at STP from $\mathrm{H}^{+}$ions in solution by the same quantity of electric charge will be

1 $44.8 \mathrm{~L}$
2 $22.4 \mathrm{~L}$
3 $11.2 \mathrm{~L}$
4 $5.6 \mathrm{~L}$
ELECTROCHEMISTRY

275986 The electrode potentials for
$\mathrm{Cu}^{2+}(\mathbf{a q})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}(\mathbf{a q})$
and $\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$
are $+0.15 \mathrm{~V}$ and $+0.50 \mathrm{~V}$, respectively. The value of $\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{0}$ will be:

1 $0.500 \mathrm{~V}$
2 $0.325 \mathrm{~V}$
3 $0.650 \mathrm{~V}$
4 $0.150 \mathrm{~V}$
ELECTROCHEMISTRY

275987 The emf of a particular voltaic cell with the cell reaction $\mathrm{Hg}_{2}^{2+}+\mathrm{H}_{2} \rightleftharpoons 2 \mathrm{Hg}+2 \mathrm{H}^{+}$is $0.65 \mathrm{~V}$. The maximum electrical work of this cell when $0.5 \mathrm{~g}$ of $\mathrm{H}_{2}$ is consumed.

1 $-3.12 \times 10^{4} \mathrm{~J}$
2 $-1.25 \times 10^{5} \mathrm{~J}$
3 $25.0 \times 10^{6} \mathrm{~J}$
4 None
ELECTROCHEMISTRY

275984 The standard electrode potentials of $\mathbf{A g}^{+} / \mathrm{Ag}$ is $+0.80 \mathrm{~V}$ and $\mathrm{Cu}^{+} / \mathrm{Cu}$ is $+\mathbf{0 . 3 4} \mathrm{V}$. These electrodes are connected through a salt bridge and if :

1 copper electrode acts as a cathode then $\mathrm{E}_{\text {cell }}^{0}$ is $+0.46 \mathrm{~V}$
2 silver electrode acts as anode then $\mathrm{E}_{\text {cell }}^{\mathrm{o}}$ is $-0.34 \mathrm{~V}$
3 copper electrode acts as anode then $\mathrm{E}_{\text {cell }}^{\mathrm{o}}$ is $+0.46 \mathrm{~V}$
4 silver electrode acts as a cathode then $\mathrm{E}_{\text {cell }}^{\mathrm{o}}$ is $-0.34 \mathrm{~V}$
5 silver electrode acts as anode and $\mathrm{E}_{\text {cell }}^{\mathrm{o}}$ is $+1.14 \mathrm{~V}$
ELECTROCHEMISTRY

275985 $4.5 \mathrm{~g}$ of aluminium (at. mass $27 \mathrm{amu}$ ) is deposited at cathode from $\mathrm{Al}^{3+}$ solution by a certain quantity of electric charge. The volume of hydrogen produced at STP from $\mathrm{H}^{+}$ions in solution by the same quantity of electric charge will be

1 $44.8 \mathrm{~L}$
2 $22.4 \mathrm{~L}$
3 $11.2 \mathrm{~L}$
4 $5.6 \mathrm{~L}$
ELECTROCHEMISTRY

275986 The electrode potentials for
$\mathrm{Cu}^{2+}(\mathbf{a q})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}(\mathbf{a q})$
and $\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$
are $+0.15 \mathrm{~V}$ and $+0.50 \mathrm{~V}$, respectively. The value of $\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{0}$ will be:

1 $0.500 \mathrm{~V}$
2 $0.325 \mathrm{~V}$
3 $0.650 \mathrm{~V}$
4 $0.150 \mathrm{~V}$
ELECTROCHEMISTRY

275987 The emf of a particular voltaic cell with the cell reaction $\mathrm{Hg}_{2}^{2+}+\mathrm{H}_{2} \rightleftharpoons 2 \mathrm{Hg}+2 \mathrm{H}^{+}$is $0.65 \mathrm{~V}$. The maximum electrical work of this cell when $0.5 \mathrm{~g}$ of $\mathrm{H}_{2}$ is consumed.

1 $-3.12 \times 10^{4} \mathrm{~J}$
2 $-1.25 \times 10^{5} \mathrm{~J}$
3 $25.0 \times 10^{6} \mathrm{~J}$
4 None
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
ELECTROCHEMISTRY

275984 The standard electrode potentials of $\mathbf{A g}^{+} / \mathrm{Ag}$ is $+0.80 \mathrm{~V}$ and $\mathrm{Cu}^{+} / \mathrm{Cu}$ is $+\mathbf{0 . 3 4} \mathrm{V}$. These electrodes are connected through a salt bridge and if :

1 copper electrode acts as a cathode then $\mathrm{E}_{\text {cell }}^{0}$ is $+0.46 \mathrm{~V}$
2 silver electrode acts as anode then $\mathrm{E}_{\text {cell }}^{\mathrm{o}}$ is $-0.34 \mathrm{~V}$
3 copper electrode acts as anode then $\mathrm{E}_{\text {cell }}^{\mathrm{o}}$ is $+0.46 \mathrm{~V}$
4 silver electrode acts as a cathode then $\mathrm{E}_{\text {cell }}^{\mathrm{o}}$ is $-0.34 \mathrm{~V}$
5 silver electrode acts as anode and $\mathrm{E}_{\text {cell }}^{\mathrm{o}}$ is $+1.14 \mathrm{~V}$
ELECTROCHEMISTRY

275985 $4.5 \mathrm{~g}$ of aluminium (at. mass $27 \mathrm{amu}$ ) is deposited at cathode from $\mathrm{Al}^{3+}$ solution by a certain quantity of electric charge. The volume of hydrogen produced at STP from $\mathrm{H}^{+}$ions in solution by the same quantity of electric charge will be

1 $44.8 \mathrm{~L}$
2 $22.4 \mathrm{~L}$
3 $11.2 \mathrm{~L}$
4 $5.6 \mathrm{~L}$
ELECTROCHEMISTRY

275986 The electrode potentials for
$\mathrm{Cu}^{2+}(\mathbf{a q})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}(\mathbf{a q})$
and $\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$
are $+0.15 \mathrm{~V}$ and $+0.50 \mathrm{~V}$, respectively. The value of $\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{0}$ will be:

1 $0.500 \mathrm{~V}$
2 $0.325 \mathrm{~V}$
3 $0.650 \mathrm{~V}$
4 $0.150 \mathrm{~V}$
ELECTROCHEMISTRY

275987 The emf of a particular voltaic cell with the cell reaction $\mathrm{Hg}_{2}^{2+}+\mathrm{H}_{2} \rightleftharpoons 2 \mathrm{Hg}+2 \mathrm{H}^{+}$is $0.65 \mathrm{~V}$. The maximum electrical work of this cell when $0.5 \mathrm{~g}$ of $\mathrm{H}_{2}$ is consumed.

1 $-3.12 \times 10^{4} \mathrm{~J}$
2 $-1.25 \times 10^{5} \mathrm{~J}$
3 $25.0 \times 10^{6} \mathrm{~J}$
4 None