00. Electrode Potential
ELECTROCHEMISTRY

275978 $\mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{0}=-0.441 \mathrm{~V}$ and $\mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{0}=0.771 \mathrm{~V}$, and standard EMF of the reaction $\mathrm{Fe}+2 \mathrm{Fe}^{3+} \rightarrow$ $3 \mathrm{Fe}^{2+}$ will be

1 $0.111 \mathrm{~V}$
2 $0.330 \mathrm{~V}$
3 $1.653 \mathrm{~V}$
4 $1.212 \mathrm{~V}$
ELECTROCHEMISTRY

275979 Find out emf of cell,
$\mathrm{Zn} ; \mathrm{Zn}^{2+}(\mathbf{M}) \ \vert \mathrm{Cu}^{2+} \mid \mathrm{Cu}(\mathbf{1 M}) ; \mathrm{E}^{0}$ for
$\mathrm{Zn}^{2+} / \mathrm{Zn}=-\mathbf{0 . 7 6} ; \mathrm{E}^{0}$ for $\mathrm{Cu}^{2+} / \mathrm{Cu}=+\mathbf{0 . 3 4}$

1 $+1.10 \mathrm{~V}$
2 $-1.10 \mathrm{~V}$
3 -0.76
4 -0.42
ELECTROCHEMISTRY

275980 Given the electrode potentials
$\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}, \mathrm{E}^{\mathrm{o}}=0.771$ volts
$\mathrm{I}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{I}^{-}, \mathrm{E}^{\mathrm{o}}=0.536$ volts
$\mathrm{E}_{\text {cell }}^{\mathrm{o}}$ for the cell reaction
$2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2} \text {, is }$

1 $1.006 \mathrm{~V}$
2 $0.503 \mathrm{~V}$
3 $0.235 \mathrm{~V}$
4 $-0.235 \mathrm{~V}$
ELECTROCHEMISTRY

275983 What is potential of platinum wire dipped into a solution of $0.1 \mathrm{M}$ in $\mathrm{Sn}^{2+}$ and 0.01 in $\mathrm{Sn}^{4+}$ ?

1 $\mathrm{E}^{\mathrm{o}}$
2 $\mathrm{E}^{\mathrm{o}}+0.059$
3 $\mathrm{E}^{\mathrm{o}}+\frac{0.059}{2}$
4 $\mathrm{E}^{\mathrm{o}}=\frac{0.059}{2}$
ELECTROCHEMISTRY

275978 $\mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{0}=-0.441 \mathrm{~V}$ and $\mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{0}=0.771 \mathrm{~V}$, and standard EMF of the reaction $\mathrm{Fe}+2 \mathrm{Fe}^{3+} \rightarrow$ $3 \mathrm{Fe}^{2+}$ will be

1 $0.111 \mathrm{~V}$
2 $0.330 \mathrm{~V}$
3 $1.653 \mathrm{~V}$
4 $1.212 \mathrm{~V}$
ELECTROCHEMISTRY

275979 Find out emf of cell,
$\mathrm{Zn} ; \mathrm{Zn}^{2+}(\mathbf{M}) \ \vert \mathrm{Cu}^{2+} \mid \mathrm{Cu}(\mathbf{1 M}) ; \mathrm{E}^{0}$ for
$\mathrm{Zn}^{2+} / \mathrm{Zn}=-\mathbf{0 . 7 6} ; \mathrm{E}^{0}$ for $\mathrm{Cu}^{2+} / \mathrm{Cu}=+\mathbf{0 . 3 4}$

1 $+1.10 \mathrm{~V}$
2 $-1.10 \mathrm{~V}$
3 -0.76
4 -0.42
ELECTROCHEMISTRY

275980 Given the electrode potentials
$\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}, \mathrm{E}^{\mathrm{o}}=0.771$ volts
$\mathrm{I}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{I}^{-}, \mathrm{E}^{\mathrm{o}}=0.536$ volts
$\mathrm{E}_{\text {cell }}^{\mathrm{o}}$ for the cell reaction
$2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2} \text {, is }$

1 $1.006 \mathrm{~V}$
2 $0.503 \mathrm{~V}$
3 $0.235 \mathrm{~V}$
4 $-0.235 \mathrm{~V}$
ELECTROCHEMISTRY

275983 What is potential of platinum wire dipped into a solution of $0.1 \mathrm{M}$ in $\mathrm{Sn}^{2+}$ and 0.01 in $\mathrm{Sn}^{4+}$ ?

1 $\mathrm{E}^{\mathrm{o}}$
2 $\mathrm{E}^{\mathrm{o}}+0.059$
3 $\mathrm{E}^{\mathrm{o}}+\frac{0.059}{2}$
4 $\mathrm{E}^{\mathrm{o}}=\frac{0.059}{2}$
ELECTROCHEMISTRY

275978 $\mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{0}=-0.441 \mathrm{~V}$ and $\mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{0}=0.771 \mathrm{~V}$, and standard EMF of the reaction $\mathrm{Fe}+2 \mathrm{Fe}^{3+} \rightarrow$ $3 \mathrm{Fe}^{2+}$ will be

1 $0.111 \mathrm{~V}$
2 $0.330 \mathrm{~V}$
3 $1.653 \mathrm{~V}$
4 $1.212 \mathrm{~V}$
ELECTROCHEMISTRY

275979 Find out emf of cell,
$\mathrm{Zn} ; \mathrm{Zn}^{2+}(\mathbf{M}) \ \vert \mathrm{Cu}^{2+} \mid \mathrm{Cu}(\mathbf{1 M}) ; \mathrm{E}^{0}$ for
$\mathrm{Zn}^{2+} / \mathrm{Zn}=-\mathbf{0 . 7 6} ; \mathrm{E}^{0}$ for $\mathrm{Cu}^{2+} / \mathrm{Cu}=+\mathbf{0 . 3 4}$

1 $+1.10 \mathrm{~V}$
2 $-1.10 \mathrm{~V}$
3 -0.76
4 -0.42
ELECTROCHEMISTRY

275980 Given the electrode potentials
$\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}, \mathrm{E}^{\mathrm{o}}=0.771$ volts
$\mathrm{I}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{I}^{-}, \mathrm{E}^{\mathrm{o}}=0.536$ volts
$\mathrm{E}_{\text {cell }}^{\mathrm{o}}$ for the cell reaction
$2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2} \text {, is }$

1 $1.006 \mathrm{~V}$
2 $0.503 \mathrm{~V}$
3 $0.235 \mathrm{~V}$
4 $-0.235 \mathrm{~V}$
ELECTROCHEMISTRY

275983 What is potential of platinum wire dipped into a solution of $0.1 \mathrm{M}$ in $\mathrm{Sn}^{2+}$ and 0.01 in $\mathrm{Sn}^{4+}$ ?

1 $\mathrm{E}^{\mathrm{o}}$
2 $\mathrm{E}^{\mathrm{o}}+0.059$
3 $\mathrm{E}^{\mathrm{o}}+\frac{0.059}{2}$
4 $\mathrm{E}^{\mathrm{o}}=\frac{0.059}{2}$
ELECTROCHEMISTRY

275978 $\mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{0}=-0.441 \mathrm{~V}$ and $\mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{0}=0.771 \mathrm{~V}$, and standard EMF of the reaction $\mathrm{Fe}+2 \mathrm{Fe}^{3+} \rightarrow$ $3 \mathrm{Fe}^{2+}$ will be

1 $0.111 \mathrm{~V}$
2 $0.330 \mathrm{~V}$
3 $1.653 \mathrm{~V}$
4 $1.212 \mathrm{~V}$
ELECTROCHEMISTRY

275979 Find out emf of cell,
$\mathrm{Zn} ; \mathrm{Zn}^{2+}(\mathbf{M}) \ \vert \mathrm{Cu}^{2+} \mid \mathrm{Cu}(\mathbf{1 M}) ; \mathrm{E}^{0}$ for
$\mathrm{Zn}^{2+} / \mathrm{Zn}=-\mathbf{0 . 7 6} ; \mathrm{E}^{0}$ for $\mathrm{Cu}^{2+} / \mathrm{Cu}=+\mathbf{0 . 3 4}$

1 $+1.10 \mathrm{~V}$
2 $-1.10 \mathrm{~V}$
3 -0.76
4 -0.42
ELECTROCHEMISTRY

275980 Given the electrode potentials
$\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}, \mathrm{E}^{\mathrm{o}}=0.771$ volts
$\mathrm{I}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{I}^{-}, \mathrm{E}^{\mathrm{o}}=0.536$ volts
$\mathrm{E}_{\text {cell }}^{\mathrm{o}}$ for the cell reaction
$2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2} \text {, is }$

1 $1.006 \mathrm{~V}$
2 $0.503 \mathrm{~V}$
3 $0.235 \mathrm{~V}$
4 $-0.235 \mathrm{~V}$
ELECTROCHEMISTRY

275983 What is potential of platinum wire dipped into a solution of $0.1 \mathrm{M}$ in $\mathrm{Sn}^{2+}$ and 0.01 in $\mathrm{Sn}^{4+}$ ?

1 $\mathrm{E}^{\mathrm{o}}$
2 $\mathrm{E}^{\mathrm{o}}+0.059$
3 $\mathrm{E}^{\mathrm{o}}+\frac{0.059}{2}$
4 $\mathrm{E}^{\mathrm{o}}=\frac{0.059}{2}$