00. Law of Chemical Equilibrium and Equilibrium Constant
Chemical Equilibrium

228950 Consider the equilibrium $X_{2}+Y_{2} \rightleftharpoons P$.
Find the stoichiometric coefficient of the $P$ using the data given in the following table:
$_{2} / ^{-1}$ | $_{2} / ^{-1}$ | $ / ^{-1}$ |
|$1.14 10^{-2}$ | $0.12 10^{-2}$ | $ ^{-2}$ |
|---|---|---|
|$0.92 10^{-2}$ | $0.22 10^{-2}$ | $3.08 10^{-2}$ |
|

1 1
2 2
3 3
4 0.5
5 4
Chemical Equilibrium

228953 The equilibrium constant $\left(K_{c}\right)$ for the following equilibrium
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{SO}_{3}(\mathrm{~g})$
at $563 \mathrm{~K}$ is 100 . At equilibrium, the number of moles of $\mathrm{SO}_{3}$ in the 10 litre flask is twice the number of moles of $\mathrm{SO}_{2}$, then the number of moles of oxygen is

1 0.4
2 0.3
3 0.2
4 0.1
Chemical Equilibrium

228954 $\quad$ (i) $\mathrm{H}_{3} \mathrm{PO}_{4}$ (aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$(aq)
(ii) $\mathrm{H}_{2} \mathrm{P} \mathrm{O}_{4}^{-}$(aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{HPO}_{4}^{2-}$ (aq)
(ii) $\mathrm{HPO}_{4}^{2-}$ (aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{PO}_{4}^{3-}$ (aq)
The equilibrium constants for the above reactions at a certain temperature are $K_{1}, K_{2}$ and $K_{3}$ respectively. The equilibrium constant for the reaction.
$\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftharpoons \quad 3 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{PO}_{4}^{3-}(\mathrm{aq})$ in terms of $\mathrm{K}_{1}$, $K_{2}$, and $K_{3}$ is

1 $\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}$
2 $\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}+\mathrm{K}_{3}}$
3 $\frac{\mathrm{K}_{3}}{\mathrm{~K}_{1} \mathrm{~K}_{2}}$
4 $\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}$
Chemical Equilibrium

228955 For the reaction, $2 \mathrm{HI}(\mathrm{g})$ degree fo dissociation $(\alpha)$ of $\mathrm{HI}(\mathrm{g})$ is related to equilibrium constant $K_{p}$ by the expression

1 $\sqrt{\frac{1+2 \mathrm{~K}_{\mathrm{p}}}{2}}$
2 $\sqrt{\frac{2 \mathrm{~K}_{\mathrm{p}}}{1+2 \mathrm{~K}_{\mathrm{p}}}}$
3 $\frac{2 \sqrt{\mathrm{K}_{\mathrm{p}}}}{1+2 \sqrt{\mathrm{K}_{\mathrm{p}}}}$
4 $\frac{1+2 \sqrt{\mathrm{K}_{\mathrm{p}}}}{2}$
Chemical Equilibrium

228950 Consider the equilibrium $X_{2}+Y_{2} \rightleftharpoons P$.
Find the stoichiometric coefficient of the $P$ using the data given in the following table:
$_{2} / ^{-1}$ | $_{2} / ^{-1}$ | $ / ^{-1}$ |
|$1.14 10^{-2}$ | $0.12 10^{-2}$ | $ ^{-2}$ |
|---|---|---|
|$0.92 10^{-2}$ | $0.22 10^{-2}$ | $3.08 10^{-2}$ |
|

1 1
2 2
3 3
4 0.5
5 4
Chemical Equilibrium

228953 The equilibrium constant $\left(K_{c}\right)$ for the following equilibrium
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{SO}_{3}(\mathrm{~g})$
at $563 \mathrm{~K}$ is 100 . At equilibrium, the number of moles of $\mathrm{SO}_{3}$ in the 10 litre flask is twice the number of moles of $\mathrm{SO}_{2}$, then the number of moles of oxygen is

1 0.4
2 0.3
3 0.2
4 0.1
Chemical Equilibrium

228954 $\quad$ (i) $\mathrm{H}_{3} \mathrm{PO}_{4}$ (aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$(aq)
(ii) $\mathrm{H}_{2} \mathrm{P} \mathrm{O}_{4}^{-}$(aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{HPO}_{4}^{2-}$ (aq)
(ii) $\mathrm{HPO}_{4}^{2-}$ (aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{PO}_{4}^{3-}$ (aq)
The equilibrium constants for the above reactions at a certain temperature are $K_{1}, K_{2}$ and $K_{3}$ respectively. The equilibrium constant for the reaction.
$\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftharpoons \quad 3 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{PO}_{4}^{3-}(\mathrm{aq})$ in terms of $\mathrm{K}_{1}$, $K_{2}$, and $K_{3}$ is

1 $\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}$
2 $\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}+\mathrm{K}_{3}}$
3 $\frac{\mathrm{K}_{3}}{\mathrm{~K}_{1} \mathrm{~K}_{2}}$
4 $\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}$
Chemical Equilibrium

228955 For the reaction, $2 \mathrm{HI}(\mathrm{g})$ degree fo dissociation $(\alpha)$ of $\mathrm{HI}(\mathrm{g})$ is related to equilibrium constant $K_{p}$ by the expression

1 $\sqrt{\frac{1+2 \mathrm{~K}_{\mathrm{p}}}{2}}$
2 $\sqrt{\frac{2 \mathrm{~K}_{\mathrm{p}}}{1+2 \mathrm{~K}_{\mathrm{p}}}}$
3 $\frac{2 \sqrt{\mathrm{K}_{\mathrm{p}}}}{1+2 \sqrt{\mathrm{K}_{\mathrm{p}}}}$
4 $\frac{1+2 \sqrt{\mathrm{K}_{\mathrm{p}}}}{2}$
Chemical Equilibrium

228950 Consider the equilibrium $X_{2}+Y_{2} \rightleftharpoons P$.
Find the stoichiometric coefficient of the $P$ using the data given in the following table:
$_{2} / ^{-1}$ | $_{2} / ^{-1}$ | $ / ^{-1}$ |
|$1.14 10^{-2}$ | $0.12 10^{-2}$ | $ ^{-2}$ |
|---|---|---|
|$0.92 10^{-2}$ | $0.22 10^{-2}$ | $3.08 10^{-2}$ |
|

1 1
2 2
3 3
4 0.5
5 4
Chemical Equilibrium

228953 The equilibrium constant $\left(K_{c}\right)$ for the following equilibrium
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{SO}_{3}(\mathrm{~g})$
at $563 \mathrm{~K}$ is 100 . At equilibrium, the number of moles of $\mathrm{SO}_{3}$ in the 10 litre flask is twice the number of moles of $\mathrm{SO}_{2}$, then the number of moles of oxygen is

1 0.4
2 0.3
3 0.2
4 0.1
Chemical Equilibrium

228954 $\quad$ (i) $\mathrm{H}_{3} \mathrm{PO}_{4}$ (aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$(aq)
(ii) $\mathrm{H}_{2} \mathrm{P} \mathrm{O}_{4}^{-}$(aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{HPO}_{4}^{2-}$ (aq)
(ii) $\mathrm{HPO}_{4}^{2-}$ (aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{PO}_{4}^{3-}$ (aq)
The equilibrium constants for the above reactions at a certain temperature are $K_{1}, K_{2}$ and $K_{3}$ respectively. The equilibrium constant for the reaction.
$\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftharpoons \quad 3 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{PO}_{4}^{3-}(\mathrm{aq})$ in terms of $\mathrm{K}_{1}$, $K_{2}$, and $K_{3}$ is

1 $\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}$
2 $\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}+\mathrm{K}_{3}}$
3 $\frac{\mathrm{K}_{3}}{\mathrm{~K}_{1} \mathrm{~K}_{2}}$
4 $\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}$
Chemical Equilibrium

228955 For the reaction, $2 \mathrm{HI}(\mathrm{g})$ degree fo dissociation $(\alpha)$ of $\mathrm{HI}(\mathrm{g})$ is related to equilibrium constant $K_{p}$ by the expression

1 $\sqrt{\frac{1+2 \mathrm{~K}_{\mathrm{p}}}{2}}$
2 $\sqrt{\frac{2 \mathrm{~K}_{\mathrm{p}}}{1+2 \mathrm{~K}_{\mathrm{p}}}}$
3 $\frac{2 \sqrt{\mathrm{K}_{\mathrm{p}}}}{1+2 \sqrt{\mathrm{K}_{\mathrm{p}}}}$
4 $\frac{1+2 \sqrt{\mathrm{K}_{\mathrm{p}}}}{2}$
Chemical Equilibrium

228950 Consider the equilibrium $X_{2}+Y_{2} \rightleftharpoons P$.
Find the stoichiometric coefficient of the $P$ using the data given in the following table:
$_{2} / ^{-1}$ | $_{2} / ^{-1}$ | $ / ^{-1}$ |
|$1.14 10^{-2}$ | $0.12 10^{-2}$ | $ ^{-2}$ |
|---|---|---|
|$0.92 10^{-2}$ | $0.22 10^{-2}$ | $3.08 10^{-2}$ |
|

1 1
2 2
3 3
4 0.5
5 4
Chemical Equilibrium

228953 The equilibrium constant $\left(K_{c}\right)$ for the following equilibrium
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{SO}_{3}(\mathrm{~g})$
at $563 \mathrm{~K}$ is 100 . At equilibrium, the number of moles of $\mathrm{SO}_{3}$ in the 10 litre flask is twice the number of moles of $\mathrm{SO}_{2}$, then the number of moles of oxygen is

1 0.4
2 0.3
3 0.2
4 0.1
Chemical Equilibrium

228954 $\quad$ (i) $\mathrm{H}_{3} \mathrm{PO}_{4}$ (aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$(aq)
(ii) $\mathrm{H}_{2} \mathrm{P} \mathrm{O}_{4}^{-}$(aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{HPO}_{4}^{2-}$ (aq)
(ii) $\mathrm{HPO}_{4}^{2-}$ (aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{PO}_{4}^{3-}$ (aq)
The equilibrium constants for the above reactions at a certain temperature are $K_{1}, K_{2}$ and $K_{3}$ respectively. The equilibrium constant for the reaction.
$\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftharpoons \quad 3 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{PO}_{4}^{3-}(\mathrm{aq})$ in terms of $\mathrm{K}_{1}$, $K_{2}$, and $K_{3}$ is

1 $\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{3}$
2 $\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}+\mathrm{K}_{3}}$
3 $\frac{\mathrm{K}_{3}}{\mathrm{~K}_{1} \mathrm{~K}_{2}}$
4 $\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}$
Chemical Equilibrium

228955 For the reaction, $2 \mathrm{HI}(\mathrm{g})$ degree fo dissociation $(\alpha)$ of $\mathrm{HI}(\mathrm{g})$ is related to equilibrium constant $K_{p}$ by the expression

1 $\sqrt{\frac{1+2 \mathrm{~K}_{\mathrm{p}}}{2}}$
2 $\sqrt{\frac{2 \mathrm{~K}_{\mathrm{p}}}{1+2 \mathrm{~K}_{\mathrm{p}}}}$
3 $\frac{2 \sqrt{\mathrm{K}_{\mathrm{p}}}}{1+2 \sqrt{\mathrm{K}_{\mathrm{p}}}}$
4 $\frac{1+2 \sqrt{\mathrm{K}_{\mathrm{p}}}}{2}$