228956
Equlilbrium constants for the following reactions at $1200 \mathrm{~K}$ are given
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{1}=6.4 \times 10^{-8}$
$2 \mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{2}=1.6 \times 10^{-6}$
The equilibrium constant for the reactions
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$ $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, at 1200
$\mathrm{K}$ will be
228959
Two equilibrium, $A B \rightleftharpoons \quad A^{+}+B^{-}$and
$\mathrm{AB}+\mathrm{B}^{-} \rightleftharpoons \quad \mathrm{AB}_{2}^{-} \quad \text { are simultaneously }$
maintained in a solution with equilibrium constants, $K_{1}$ and $K_{2}$ respectively. The ratio of $\left[\mathrm{A}^{+}\right]$to $\left[\mathrm{AB}_{2}^{-}\right]$in the solution is
228960 The equilibrium constant values, under the same conditions of temperature and pressure, for the equilibria $\mathrm{A}_{2}+3 \mathrm{~B}_{2} \rightleftharpoons \quad \mathbf{A B}$ and $\mathrm{AB}_{3}$ $\frac{1}{2} A_{2}+\frac{3}{2} B_{2}$ are respectively, $x \operatorname{mol}^{-2} L^{2}$ and $y$ mol $\mathrm{L}^{-1}$. The correct relation between $\mathrm{x}$ and $\mathrm{y}$ is
228956
Equlilbrium constants for the following reactions at $1200 \mathrm{~K}$ are given
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{1}=6.4 \times 10^{-8}$
$2 \mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{2}=1.6 \times 10^{-6}$
The equilibrium constant for the reactions
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$ $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, at 1200
$\mathrm{K}$ will be
228959
Two equilibrium, $A B \rightleftharpoons \quad A^{+}+B^{-}$and
$\mathrm{AB}+\mathrm{B}^{-} \rightleftharpoons \quad \mathrm{AB}_{2}^{-} \quad \text { are simultaneously }$
maintained in a solution with equilibrium constants, $K_{1}$ and $K_{2}$ respectively. The ratio of $\left[\mathrm{A}^{+}\right]$to $\left[\mathrm{AB}_{2}^{-}\right]$in the solution is
228960 The equilibrium constant values, under the same conditions of temperature and pressure, for the equilibria $\mathrm{A}_{2}+3 \mathrm{~B}_{2} \rightleftharpoons \quad \mathbf{A B}$ and $\mathrm{AB}_{3}$ $\frac{1}{2} A_{2}+\frac{3}{2} B_{2}$ are respectively, $x \operatorname{mol}^{-2} L^{2}$ and $y$ mol $\mathrm{L}^{-1}$. The correct relation between $\mathrm{x}$ and $\mathrm{y}$ is
228956
Equlilbrium constants for the following reactions at $1200 \mathrm{~K}$ are given
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{1}=6.4 \times 10^{-8}$
$2 \mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{2}=1.6 \times 10^{-6}$
The equilibrium constant for the reactions
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$ $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, at 1200
$\mathrm{K}$ will be
228959
Two equilibrium, $A B \rightleftharpoons \quad A^{+}+B^{-}$and
$\mathrm{AB}+\mathrm{B}^{-} \rightleftharpoons \quad \mathrm{AB}_{2}^{-} \quad \text { are simultaneously }$
maintained in a solution with equilibrium constants, $K_{1}$ and $K_{2}$ respectively. The ratio of $\left[\mathrm{A}^{+}\right]$to $\left[\mathrm{AB}_{2}^{-}\right]$in the solution is
228960 The equilibrium constant values, under the same conditions of temperature and pressure, for the equilibria $\mathrm{A}_{2}+3 \mathrm{~B}_{2} \rightleftharpoons \quad \mathbf{A B}$ and $\mathrm{AB}_{3}$ $\frac{1}{2} A_{2}+\frac{3}{2} B_{2}$ are respectively, $x \operatorname{mol}^{-2} L^{2}$ and $y$ mol $\mathrm{L}^{-1}$. The correct relation between $\mathrm{x}$ and $\mathrm{y}$ is
228956
Equlilbrium constants for the following reactions at $1200 \mathrm{~K}$ are given
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{1}=6.4 \times 10^{-8}$
$2 \mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{2}=1.6 \times 10^{-6}$
The equilibrium constant for the reactions
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$ $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, at 1200
$\mathrm{K}$ will be
228959
Two equilibrium, $A B \rightleftharpoons \quad A^{+}+B^{-}$and
$\mathrm{AB}+\mathrm{B}^{-} \rightleftharpoons \quad \mathrm{AB}_{2}^{-} \quad \text { are simultaneously }$
maintained in a solution with equilibrium constants, $K_{1}$ and $K_{2}$ respectively. The ratio of $\left[\mathrm{A}^{+}\right]$to $\left[\mathrm{AB}_{2}^{-}\right]$in the solution is
228960 The equilibrium constant values, under the same conditions of temperature and pressure, for the equilibria $\mathrm{A}_{2}+3 \mathrm{~B}_{2} \rightleftharpoons \quad \mathbf{A B}$ and $\mathrm{AB}_{3}$ $\frac{1}{2} A_{2}+\frac{3}{2} B_{2}$ are respectively, $x \operatorname{mol}^{-2} L^{2}$ and $y$ mol $\mathrm{L}^{-1}$. The correct relation between $\mathrm{x}$ and $\mathrm{y}$ is