00. Law of Chemical Equilibrium and Equilibrium Constant
Chemical Equilibrium

228956 Equlilbrium constants for the following reactions at $1200 \mathrm{~K}$ are given
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{1}=6.4 \times 10^{-8}$
$2 \mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{2}=1.6 \times 10^{-6}$
The equilibrium constant for the reactions
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$ $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, at 1200
$\mathrm{K}$ will be

1 0.05
2 20
3 0.2
4 5.0
Chemical Equilibrium

228958 For the reaction,
$\mathrm{A}(\mathrm{S})+\mathrm{B}(\mathrm{g})+$ Heat+ $2 \mathrm{C}(\mathrm{s})+2 \mathrm{D}(\mathrm{g})$
at equilibrium, if pressure of $B$ is doubled, then to re-establish the equilibrium, the factor by which concentration of $D$ changes, will be

1 2
2 $\sqrt{2}$
3 3
4 $\sqrt{3}$
Chemical Equilibrium

228959 Two equilibrium, $A B \rightleftharpoons \quad A^{+}+B^{-}$and
$\mathrm{AB}+\mathrm{B}^{-} \rightleftharpoons \quad \mathrm{AB}_{2}^{-} \quad \text { are simultaneously }$
maintained in a solution with equilibrium constants, $K_{1}$ and $K_{2}$ respectively. The ratio of $\left[\mathrm{A}^{+}\right]$to $\left[\mathrm{AB}_{2}^{-}\right]$in the solution is

1 directly proportional to $\left[\mathrm{B}^{-}\right]$
2 inversely proportional to $\left[\mathrm{B}^{-}\right]$
3 directly proportional to the square of $\left[\mathrm{B}^{-}\right]$
4 inversely proportional to the square of $\left[\mathrm{B}^{-}\right]$
KEAM - 2013
Chemical Equilibrium

228960 The equilibrium constant values, under the same conditions of temperature and pressure, for the equilibria $\mathrm{A}_{2}+3 \mathrm{~B}_{2} \rightleftharpoons \quad \mathbf{A B}$ and $\mathrm{AB}_{3}$ $\frac{1}{2} A_{2}+\frac{3}{2} B_{2}$ are respectively, $x \operatorname{mol}^{-2} L^{2}$ and $y$ mol $\mathrm{L}^{-1}$. The correct relation between $\mathrm{x}$ and $\mathrm{y}$ is

1 $x=2 y$
2 $y=2 x$
3 $x=y^{1 / 2}$
4 $y=x^{-1 / 2}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Chemical Equilibrium

228956 Equlilbrium constants for the following reactions at $1200 \mathrm{~K}$ are given
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{1}=6.4 \times 10^{-8}$
$2 \mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{2}=1.6 \times 10^{-6}$
The equilibrium constant for the reactions
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$ $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, at 1200
$\mathrm{K}$ will be

1 0.05
2 20
3 0.2
4 5.0
Chemical Equilibrium

228958 For the reaction,
$\mathrm{A}(\mathrm{S})+\mathrm{B}(\mathrm{g})+$ Heat+ $2 \mathrm{C}(\mathrm{s})+2 \mathrm{D}(\mathrm{g})$
at equilibrium, if pressure of $B$ is doubled, then to re-establish the equilibrium, the factor by which concentration of $D$ changes, will be

1 2
2 $\sqrt{2}$
3 3
4 $\sqrt{3}$
Chemical Equilibrium

228959 Two equilibrium, $A B \rightleftharpoons \quad A^{+}+B^{-}$and
$\mathrm{AB}+\mathrm{B}^{-} \rightleftharpoons \quad \mathrm{AB}_{2}^{-} \quad \text { are simultaneously }$
maintained in a solution with equilibrium constants, $K_{1}$ and $K_{2}$ respectively. The ratio of $\left[\mathrm{A}^{+}\right]$to $\left[\mathrm{AB}_{2}^{-}\right]$in the solution is

1 directly proportional to $\left[\mathrm{B}^{-}\right]$
2 inversely proportional to $\left[\mathrm{B}^{-}\right]$
3 directly proportional to the square of $\left[\mathrm{B}^{-}\right]$
4 inversely proportional to the square of $\left[\mathrm{B}^{-}\right]$
KEAM - 2013
Chemical Equilibrium

228960 The equilibrium constant values, under the same conditions of temperature and pressure, for the equilibria $\mathrm{A}_{2}+3 \mathrm{~B}_{2} \rightleftharpoons \quad \mathbf{A B}$ and $\mathrm{AB}_{3}$ $\frac{1}{2} A_{2}+\frac{3}{2} B_{2}$ are respectively, $x \operatorname{mol}^{-2} L^{2}$ and $y$ mol $\mathrm{L}^{-1}$. The correct relation between $\mathrm{x}$ and $\mathrm{y}$ is

1 $x=2 y$
2 $y=2 x$
3 $x=y^{1 / 2}$
4 $y=x^{-1 / 2}$
Chemical Equilibrium

228956 Equlilbrium constants for the following reactions at $1200 \mathrm{~K}$ are given
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{1}=6.4 \times 10^{-8}$
$2 \mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{2}=1.6 \times 10^{-6}$
The equilibrium constant for the reactions
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$ $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, at 1200
$\mathrm{K}$ will be

1 0.05
2 20
3 0.2
4 5.0
Chemical Equilibrium

228958 For the reaction,
$\mathrm{A}(\mathrm{S})+\mathrm{B}(\mathrm{g})+$ Heat+ $2 \mathrm{C}(\mathrm{s})+2 \mathrm{D}(\mathrm{g})$
at equilibrium, if pressure of $B$ is doubled, then to re-establish the equilibrium, the factor by which concentration of $D$ changes, will be

1 2
2 $\sqrt{2}$
3 3
4 $\sqrt{3}$
Chemical Equilibrium

228959 Two equilibrium, $A B \rightleftharpoons \quad A^{+}+B^{-}$and
$\mathrm{AB}+\mathrm{B}^{-} \rightleftharpoons \quad \mathrm{AB}_{2}^{-} \quad \text { are simultaneously }$
maintained in a solution with equilibrium constants, $K_{1}$ and $K_{2}$ respectively. The ratio of $\left[\mathrm{A}^{+}\right]$to $\left[\mathrm{AB}_{2}^{-}\right]$in the solution is

1 directly proportional to $\left[\mathrm{B}^{-}\right]$
2 inversely proportional to $\left[\mathrm{B}^{-}\right]$
3 directly proportional to the square of $\left[\mathrm{B}^{-}\right]$
4 inversely proportional to the square of $\left[\mathrm{B}^{-}\right]$
KEAM - 2013
Chemical Equilibrium

228960 The equilibrium constant values, under the same conditions of temperature and pressure, for the equilibria $\mathrm{A}_{2}+3 \mathrm{~B}_{2} \rightleftharpoons \quad \mathbf{A B}$ and $\mathrm{AB}_{3}$ $\frac{1}{2} A_{2}+\frac{3}{2} B_{2}$ are respectively, $x \operatorname{mol}^{-2} L^{2}$ and $y$ mol $\mathrm{L}^{-1}$. The correct relation between $\mathrm{x}$ and $\mathrm{y}$ is

1 $x=2 y$
2 $y=2 x$
3 $x=y^{1 / 2}$
4 $y=x^{-1 / 2}$
Chemical Equilibrium

228956 Equlilbrium constants for the following reactions at $1200 \mathrm{~K}$ are given
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{1}=6.4 \times 10^{-8}$
$2 \mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}_{2}=1.6 \times 10^{-6}$
The equilibrium constant for the reactions
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$ $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, at 1200
$\mathrm{K}$ will be

1 0.05
2 20
3 0.2
4 5.0
Chemical Equilibrium

228958 For the reaction,
$\mathrm{A}(\mathrm{S})+\mathrm{B}(\mathrm{g})+$ Heat+ $2 \mathrm{C}(\mathrm{s})+2 \mathrm{D}(\mathrm{g})$
at equilibrium, if pressure of $B$ is doubled, then to re-establish the equilibrium, the factor by which concentration of $D$ changes, will be

1 2
2 $\sqrt{2}$
3 3
4 $\sqrt{3}$
Chemical Equilibrium

228959 Two equilibrium, $A B \rightleftharpoons \quad A^{+}+B^{-}$and
$\mathrm{AB}+\mathrm{B}^{-} \rightleftharpoons \quad \mathrm{AB}_{2}^{-} \quad \text { are simultaneously }$
maintained in a solution with equilibrium constants, $K_{1}$ and $K_{2}$ respectively. The ratio of $\left[\mathrm{A}^{+}\right]$to $\left[\mathrm{AB}_{2}^{-}\right]$in the solution is

1 directly proportional to $\left[\mathrm{B}^{-}\right]$
2 inversely proportional to $\left[\mathrm{B}^{-}\right]$
3 directly proportional to the square of $\left[\mathrm{B}^{-}\right]$
4 inversely proportional to the square of $\left[\mathrm{B}^{-}\right]$
KEAM - 2013
Chemical Equilibrium

228960 The equilibrium constant values, under the same conditions of temperature and pressure, for the equilibria $\mathrm{A}_{2}+3 \mathrm{~B}_{2} \rightleftharpoons \quad \mathbf{A B}$ and $\mathrm{AB}_{3}$ $\frac{1}{2} A_{2}+\frac{3}{2} B_{2}$ are respectively, $x \operatorname{mol}^{-2} L^{2}$ and $y$ mol $\mathrm{L}^{-1}$. The correct relation between $\mathrm{x}$ and $\mathrm{y}$ is

1 $x=2 y$
2 $y=2 x$
3 $x=y^{1 / 2}$
4 $y=x^{-1 / 2}$