228950
Consider the equilibrium $X_{2}+Y_{2} \rightleftharpoons P$.
Find the stoichiometric coefficient of the $P$ using the data given in the following table:
$_{2} / ^{-1}$ | $_{2} / ^{-1}$ | $ / ^{-1}$ |
|$1.14 10^{-2}$ | $0.12 10^{-2}$ | $ ^{-2}$ |
|---|---|---|
|$0.92 10^{-2}$ | $0.22 10^{-2}$ | $3.08 10^{-2}$ |
|
228953
The equilibrium constant $\left(K_{c}\right)$ for the following equilibrium
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{SO}_{3}(\mathrm{~g})$
at $563 \mathrm{~K}$ is 100 . At equilibrium, the number of moles of $\mathrm{SO}_{3}$ in the 10 litre flask is twice the number of moles of $\mathrm{SO}_{2}$, then the number of moles of oxygen is
228954
$\quad$ (i) $\mathrm{H}_{3} \mathrm{PO}_{4}$ (aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$(aq)
(ii) $\mathrm{H}_{2} \mathrm{P} \mathrm{O}_{4}^{-}$(aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{HPO}_{4}^{2-}$ (aq)
(ii) $\mathrm{HPO}_{4}^{2-}$ (aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{PO}_{4}^{3-}$ (aq)
The equilibrium constants for the above reactions at a certain temperature are $K_{1}, K_{2}$ and $K_{3}$ respectively. The equilibrium constant for the reaction.
$\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftharpoons \quad 3 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{PO}_{4}^{3-}(\mathrm{aq})$ in terms of $\mathrm{K}_{1}$, $K_{2}$, and $K_{3}$ is
228950
Consider the equilibrium $X_{2}+Y_{2} \rightleftharpoons P$.
Find the stoichiometric coefficient of the $P$ using the data given in the following table:
$_{2} / ^{-1}$ | $_{2} / ^{-1}$ | $ / ^{-1}$ |
|$1.14 10^{-2}$ | $0.12 10^{-2}$ | $ ^{-2}$ |
|---|---|---|
|$0.92 10^{-2}$ | $0.22 10^{-2}$ | $3.08 10^{-2}$ |
|
228953
The equilibrium constant $\left(K_{c}\right)$ for the following equilibrium
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{SO}_{3}(\mathrm{~g})$
at $563 \mathrm{~K}$ is 100 . At equilibrium, the number of moles of $\mathrm{SO}_{3}$ in the 10 litre flask is twice the number of moles of $\mathrm{SO}_{2}$, then the number of moles of oxygen is
228954
$\quad$ (i) $\mathrm{H}_{3} \mathrm{PO}_{4}$ (aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$(aq)
(ii) $\mathrm{H}_{2} \mathrm{P} \mathrm{O}_{4}^{-}$(aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{HPO}_{4}^{2-}$ (aq)
(ii) $\mathrm{HPO}_{4}^{2-}$ (aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{PO}_{4}^{3-}$ (aq)
The equilibrium constants for the above reactions at a certain temperature are $K_{1}, K_{2}$ and $K_{3}$ respectively. The equilibrium constant for the reaction.
$\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftharpoons \quad 3 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{PO}_{4}^{3-}(\mathrm{aq})$ in terms of $\mathrm{K}_{1}$, $K_{2}$, and $K_{3}$ is
228950
Consider the equilibrium $X_{2}+Y_{2} \rightleftharpoons P$.
Find the stoichiometric coefficient of the $P$ using the data given in the following table:
$_{2} / ^{-1}$ | $_{2} / ^{-1}$ | $ / ^{-1}$ |
|$1.14 10^{-2}$ | $0.12 10^{-2}$ | $ ^{-2}$ |
|---|---|---|
|$0.92 10^{-2}$ | $0.22 10^{-2}$ | $3.08 10^{-2}$ |
|
228953
The equilibrium constant $\left(K_{c}\right)$ for the following equilibrium
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{SO}_{3}(\mathrm{~g})$
at $563 \mathrm{~K}$ is 100 . At equilibrium, the number of moles of $\mathrm{SO}_{3}$ in the 10 litre flask is twice the number of moles of $\mathrm{SO}_{2}$, then the number of moles of oxygen is
228954
$\quad$ (i) $\mathrm{H}_{3} \mathrm{PO}_{4}$ (aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$(aq)
(ii) $\mathrm{H}_{2} \mathrm{P} \mathrm{O}_{4}^{-}$(aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{HPO}_{4}^{2-}$ (aq)
(ii) $\mathrm{HPO}_{4}^{2-}$ (aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{PO}_{4}^{3-}$ (aq)
The equilibrium constants for the above reactions at a certain temperature are $K_{1}, K_{2}$ and $K_{3}$ respectively. The equilibrium constant for the reaction.
$\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftharpoons \quad 3 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{PO}_{4}^{3-}(\mathrm{aq})$ in terms of $\mathrm{K}_{1}$, $K_{2}$, and $K_{3}$ is
228950
Consider the equilibrium $X_{2}+Y_{2} \rightleftharpoons P$.
Find the stoichiometric coefficient of the $P$ using the data given in the following table:
$_{2} / ^{-1}$ | $_{2} / ^{-1}$ | $ / ^{-1}$ |
|$1.14 10^{-2}$ | $0.12 10^{-2}$ | $ ^{-2}$ |
|---|---|---|
|$0.92 10^{-2}$ | $0.22 10^{-2}$ | $3.08 10^{-2}$ |
|
228953
The equilibrium constant $\left(K_{c}\right)$ for the following equilibrium
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{SO}_{3}(\mathrm{~g})$
at $563 \mathrm{~K}$ is 100 . At equilibrium, the number of moles of $\mathrm{SO}_{3}$ in the 10 litre flask is twice the number of moles of $\mathrm{SO}_{2}$, then the number of moles of oxygen is
228954
$\quad$ (i) $\mathrm{H}_{3} \mathrm{PO}_{4}$ (aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$(aq)
(ii) $\mathrm{H}_{2} \mathrm{P} \mathrm{O}_{4}^{-}$(aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{HPO}_{4}^{2-}$ (aq)
(ii) $\mathrm{HPO}_{4}^{2-}$ (aq) $\rightleftharpoons \quad \mathrm{H}^{+}$(aq) $+\mathrm{PO}_{4}^{3-}$ (aq)
The equilibrium constants for the above reactions at a certain temperature are $K_{1}, K_{2}$ and $K_{3}$ respectively. The equilibrium constant for the reaction.
$\mathrm{H}_{3} \mathrm{PO}_{4} \rightleftharpoons \quad 3 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{PO}_{4}^{3-}(\mathrm{aq})$ in terms of $\mathrm{K}_{1}$, $K_{2}$, and $K_{3}$ is