Dimensions
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
PHXI02:UNITS AND MEASUREMENTS

367289 In relation \(P = \frac{a}{b}{e^{ - \left( {aE/t} \right)}}\) \(P\) represents number, \(E\) is energy and \(t\) is time. The dimension of \(a\) and \(b\) is

1 \(\left[ {M{L^2}{T^3}} \right],\left[ {ML{T^{ - 1}}} \right]\)
2 \(\left[ {{M^{ - 1}}{L^{ - 2}}{T^3}} \right],\left[ {{M^{ - 1}}{L^2}{T^{ - 3}}} \right]\)
3 \(\left[ {{M^{ - 1}}{L^{ - 2}}{T^{ - 3}}} \right],\left[ {M{L^2}{T^3}} \right]\)
4 \(\left[ {{M^{ - 1}}{L^{ - 2}}{T^3}} \right],\left[ {{M^{ - 1}}{L^{ - 2}}{T^3}} \right]\)
PHXI02:UNITS AND MEASUREMENTS

367290 Find the dimensional formula of surface tension \(S\),equation involving the surface tension \(S = \frac{{\rho grh}}{2}\)

1 \({M^{ - 1}}{T^{ - 1}}\)
2 \(M{T^2}\)
3 \({M^{ - 1}}{T^2}\)
4 \(M{T^{ - 2}}\)
PHXI02:UNITS AND MEASUREMENTS

367291 In the relation, \({P=\dfrac{\alpha}{\beta} e^{-\dfrac{\alpha}{k \theta}} P}\) is pressure, \({Z}\) is the distance, \({k}\) is Boltzmann constant, and \({\theta}\) is the temperature. The dimensional formula of \({\beta}\) will be

1 \({\left[M^{0} L^{2} T^{0}\right]}\)
2 \({\left[M^{1} L^{2} T^{1}\right]}\)
3 \({\left[M^{1} L^{0} T^{-1}\right]}\)
4 \({\left[M^{1} L^{2} T^{-1}\right]}\)
PHXI02:UNITS AND MEASUREMENTS

367292 Given that the displacement of an oscillating particle is given by \(y=A \sin (B x+C t+D)\). The dimensional formula for \((A B C D)\) is:

1 \(\left[M^{0} L^{-1} T^{0}\right]\)
2 \(\left[M^{0} L^{0} T^{-1}\right]\)
3 \(\left[M^{0} L^{-1} T^{-1}\right]\)
4 \(\left[M^{0} L^{0} T^{0}\right]\)
PHXI02:UNITS AND MEASUREMENTS

367289 In relation \(P = \frac{a}{b}{e^{ - \left( {aE/t} \right)}}\) \(P\) represents number, \(E\) is energy and \(t\) is time. The dimension of \(a\) and \(b\) is

1 \(\left[ {M{L^2}{T^3}} \right],\left[ {ML{T^{ - 1}}} \right]\)
2 \(\left[ {{M^{ - 1}}{L^{ - 2}}{T^3}} \right],\left[ {{M^{ - 1}}{L^2}{T^{ - 3}}} \right]\)
3 \(\left[ {{M^{ - 1}}{L^{ - 2}}{T^{ - 3}}} \right],\left[ {M{L^2}{T^3}} \right]\)
4 \(\left[ {{M^{ - 1}}{L^{ - 2}}{T^3}} \right],\left[ {{M^{ - 1}}{L^{ - 2}}{T^3}} \right]\)
PHXI02:UNITS AND MEASUREMENTS

367290 Find the dimensional formula of surface tension \(S\),equation involving the surface tension \(S = \frac{{\rho grh}}{2}\)

1 \({M^{ - 1}}{T^{ - 1}}\)
2 \(M{T^2}\)
3 \({M^{ - 1}}{T^2}\)
4 \(M{T^{ - 2}}\)
PHXI02:UNITS AND MEASUREMENTS

367291 In the relation, \({P=\dfrac{\alpha}{\beta} e^{-\dfrac{\alpha}{k \theta}} P}\) is pressure, \({Z}\) is the distance, \({k}\) is Boltzmann constant, and \({\theta}\) is the temperature. The dimensional formula of \({\beta}\) will be

1 \({\left[M^{0} L^{2} T^{0}\right]}\)
2 \({\left[M^{1} L^{2} T^{1}\right]}\)
3 \({\left[M^{1} L^{0} T^{-1}\right]}\)
4 \({\left[M^{1} L^{2} T^{-1}\right]}\)
PHXI02:UNITS AND MEASUREMENTS

367292 Given that the displacement of an oscillating particle is given by \(y=A \sin (B x+C t+D)\). The dimensional formula for \((A B C D)\) is:

1 \(\left[M^{0} L^{-1} T^{0}\right]\)
2 \(\left[M^{0} L^{0} T^{-1}\right]\)
3 \(\left[M^{0} L^{-1} T^{-1}\right]\)
4 \(\left[M^{0} L^{0} T^{0}\right]\)
PHXI02:UNITS AND MEASUREMENTS

367289 In relation \(P = \frac{a}{b}{e^{ - \left( {aE/t} \right)}}\) \(P\) represents number, \(E\) is energy and \(t\) is time. The dimension of \(a\) and \(b\) is

1 \(\left[ {M{L^2}{T^3}} \right],\left[ {ML{T^{ - 1}}} \right]\)
2 \(\left[ {{M^{ - 1}}{L^{ - 2}}{T^3}} \right],\left[ {{M^{ - 1}}{L^2}{T^{ - 3}}} \right]\)
3 \(\left[ {{M^{ - 1}}{L^{ - 2}}{T^{ - 3}}} \right],\left[ {M{L^2}{T^3}} \right]\)
4 \(\left[ {{M^{ - 1}}{L^{ - 2}}{T^3}} \right],\left[ {{M^{ - 1}}{L^{ - 2}}{T^3}} \right]\)
PHXI02:UNITS AND MEASUREMENTS

367290 Find the dimensional formula of surface tension \(S\),equation involving the surface tension \(S = \frac{{\rho grh}}{2}\)

1 \({M^{ - 1}}{T^{ - 1}}\)
2 \(M{T^2}\)
3 \({M^{ - 1}}{T^2}\)
4 \(M{T^{ - 2}}\)
PHXI02:UNITS AND MEASUREMENTS

367291 In the relation, \({P=\dfrac{\alpha}{\beta} e^{-\dfrac{\alpha}{k \theta}} P}\) is pressure, \({Z}\) is the distance, \({k}\) is Boltzmann constant, and \({\theta}\) is the temperature. The dimensional formula of \({\beta}\) will be

1 \({\left[M^{0} L^{2} T^{0}\right]}\)
2 \({\left[M^{1} L^{2} T^{1}\right]}\)
3 \({\left[M^{1} L^{0} T^{-1}\right]}\)
4 \({\left[M^{1} L^{2} T^{-1}\right]}\)
PHXI02:UNITS AND MEASUREMENTS

367292 Given that the displacement of an oscillating particle is given by \(y=A \sin (B x+C t+D)\). The dimensional formula for \((A B C D)\) is:

1 \(\left[M^{0} L^{-1} T^{0}\right]\)
2 \(\left[M^{0} L^{0} T^{-1}\right]\)
3 \(\left[M^{0} L^{-1} T^{-1}\right]\)
4 \(\left[M^{0} L^{0} T^{0}\right]\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
PHXI02:UNITS AND MEASUREMENTS

367289 In relation \(P = \frac{a}{b}{e^{ - \left( {aE/t} \right)}}\) \(P\) represents number, \(E\) is energy and \(t\) is time. The dimension of \(a\) and \(b\) is

1 \(\left[ {M{L^2}{T^3}} \right],\left[ {ML{T^{ - 1}}} \right]\)
2 \(\left[ {{M^{ - 1}}{L^{ - 2}}{T^3}} \right],\left[ {{M^{ - 1}}{L^2}{T^{ - 3}}} \right]\)
3 \(\left[ {{M^{ - 1}}{L^{ - 2}}{T^{ - 3}}} \right],\left[ {M{L^2}{T^3}} \right]\)
4 \(\left[ {{M^{ - 1}}{L^{ - 2}}{T^3}} \right],\left[ {{M^{ - 1}}{L^{ - 2}}{T^3}} \right]\)
PHXI02:UNITS AND MEASUREMENTS

367290 Find the dimensional formula of surface tension \(S\),equation involving the surface tension \(S = \frac{{\rho grh}}{2}\)

1 \({M^{ - 1}}{T^{ - 1}}\)
2 \(M{T^2}\)
3 \({M^{ - 1}}{T^2}\)
4 \(M{T^{ - 2}}\)
PHXI02:UNITS AND MEASUREMENTS

367291 In the relation, \({P=\dfrac{\alpha}{\beta} e^{-\dfrac{\alpha}{k \theta}} P}\) is pressure, \({Z}\) is the distance, \({k}\) is Boltzmann constant, and \({\theta}\) is the temperature. The dimensional formula of \({\beta}\) will be

1 \({\left[M^{0} L^{2} T^{0}\right]}\)
2 \({\left[M^{1} L^{2} T^{1}\right]}\)
3 \({\left[M^{1} L^{0} T^{-1}\right]}\)
4 \({\left[M^{1} L^{2} T^{-1}\right]}\)
PHXI02:UNITS AND MEASUREMENTS

367292 Given that the displacement of an oscillating particle is given by \(y=A \sin (B x+C t+D)\). The dimensional formula for \((A B C D)\) is:

1 \(\left[M^{0} L^{-1} T^{0}\right]\)
2 \(\left[M^{0} L^{0} T^{-1}\right]\)
3 \(\left[M^{0} L^{-1} T^{-1}\right]\)
4 \(\left[M^{0} L^{0} T^{0}\right]\)