Dimensions
PHXI02:UNITS AND MEASUREMENTS

367285 A physical quantity depends on time (\(t\)) as \(A = {A_o}{e^{ - \alpha {t^3}}}.\) Then constant \(\alpha \) has dimensions

1 \(\left[ T \right]\)
2 \(\left[ {{T^{ - 2}}} \right]\)
3 \(\left[ {{T^{ - 1}}} \right]\)
4 \(\left[ {{T^{ - 3}}} \right]\)
PHXI02:UNITS AND MEASUREMENTS

367286 Consider two physical quantities \(A\) and \(B\) related to each other as \(E=\dfrac{B-x^{2}}{A t}\) where \(E,x\) and \(t\) have dimensions of energy, length and time respectively.The dimension of \(AB\) is

1 \(L^{0} M^{-1} T^{1}\)
2 \(L^{-2} M^{1} T^{0}\)
3 \(L^{2} M^{-1} T^{1}\)
4 \(L^{-2} M^{-1} T^{1}\)
PHXI02:UNITS AND MEASUREMENTS

367287 Distance \({Z}\) travelled by a particle is defined by \({Z=\alpha+\beta t+\gamma t^{2}}\). Dimensions of \({\gamma}\) are

1 \({\left[{LT}^{-1}\right]}\)
2 \({\left[{L}^{-1} {~T}\right]}\)
3 \({\left[{LT}^{-2}\right]}\)
4 \({\left[{LT}^{2}\right]}\)
PHXI02:UNITS AND MEASUREMENTS

367288 The dimension of physical quantity \(X\) in the equation force \(=\dfrac{X}{\sqrt{\text { Density }}}\) is given by:

1 \(M^{1} L^{4} T^{-2}\)
2 \(M^{2} L^{-2} T^{-1}\)
3 \(M^{3 / 2} L^{-1 / 2} T^{-2}\)
4 \(M^{1} L^{-2} T^{-1}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
PHXI02:UNITS AND MEASUREMENTS

367285 A physical quantity depends on time (\(t\)) as \(A = {A_o}{e^{ - \alpha {t^3}}}.\) Then constant \(\alpha \) has dimensions

1 \(\left[ T \right]\)
2 \(\left[ {{T^{ - 2}}} \right]\)
3 \(\left[ {{T^{ - 1}}} \right]\)
4 \(\left[ {{T^{ - 3}}} \right]\)
PHXI02:UNITS AND MEASUREMENTS

367286 Consider two physical quantities \(A\) and \(B\) related to each other as \(E=\dfrac{B-x^{2}}{A t}\) where \(E,x\) and \(t\) have dimensions of energy, length and time respectively.The dimension of \(AB\) is

1 \(L^{0} M^{-1} T^{1}\)
2 \(L^{-2} M^{1} T^{0}\)
3 \(L^{2} M^{-1} T^{1}\)
4 \(L^{-2} M^{-1} T^{1}\)
PHXI02:UNITS AND MEASUREMENTS

367287 Distance \({Z}\) travelled by a particle is defined by \({Z=\alpha+\beta t+\gamma t^{2}}\). Dimensions of \({\gamma}\) are

1 \({\left[{LT}^{-1}\right]}\)
2 \({\left[{L}^{-1} {~T}\right]}\)
3 \({\left[{LT}^{-2}\right]}\)
4 \({\left[{LT}^{2}\right]}\)
PHXI02:UNITS AND MEASUREMENTS

367288 The dimension of physical quantity \(X\) in the equation force \(=\dfrac{X}{\sqrt{\text { Density }}}\) is given by:

1 \(M^{1} L^{4} T^{-2}\)
2 \(M^{2} L^{-2} T^{-1}\)
3 \(M^{3 / 2} L^{-1 / 2} T^{-2}\)
4 \(M^{1} L^{-2} T^{-1}\)
PHXI02:UNITS AND MEASUREMENTS

367285 A physical quantity depends on time (\(t\)) as \(A = {A_o}{e^{ - \alpha {t^3}}}.\) Then constant \(\alpha \) has dimensions

1 \(\left[ T \right]\)
2 \(\left[ {{T^{ - 2}}} \right]\)
3 \(\left[ {{T^{ - 1}}} \right]\)
4 \(\left[ {{T^{ - 3}}} \right]\)
PHXI02:UNITS AND MEASUREMENTS

367286 Consider two physical quantities \(A\) and \(B\) related to each other as \(E=\dfrac{B-x^{2}}{A t}\) where \(E,x\) and \(t\) have dimensions of energy, length and time respectively.The dimension of \(AB\) is

1 \(L^{0} M^{-1} T^{1}\)
2 \(L^{-2} M^{1} T^{0}\)
3 \(L^{2} M^{-1} T^{1}\)
4 \(L^{-2} M^{-1} T^{1}\)
PHXI02:UNITS AND MEASUREMENTS

367287 Distance \({Z}\) travelled by a particle is defined by \({Z=\alpha+\beta t+\gamma t^{2}}\). Dimensions of \({\gamma}\) are

1 \({\left[{LT}^{-1}\right]}\)
2 \({\left[{L}^{-1} {~T}\right]}\)
3 \({\left[{LT}^{-2}\right]}\)
4 \({\left[{LT}^{2}\right]}\)
PHXI02:UNITS AND MEASUREMENTS

367288 The dimension of physical quantity \(X\) in the equation force \(=\dfrac{X}{\sqrt{\text { Density }}}\) is given by:

1 \(M^{1} L^{4} T^{-2}\)
2 \(M^{2} L^{-2} T^{-1}\)
3 \(M^{3 / 2} L^{-1 / 2} T^{-2}\)
4 \(M^{1} L^{-2} T^{-1}\)
PHXI02:UNITS AND MEASUREMENTS

367285 A physical quantity depends on time (\(t\)) as \(A = {A_o}{e^{ - \alpha {t^3}}}.\) Then constant \(\alpha \) has dimensions

1 \(\left[ T \right]\)
2 \(\left[ {{T^{ - 2}}} \right]\)
3 \(\left[ {{T^{ - 1}}} \right]\)
4 \(\left[ {{T^{ - 3}}} \right]\)
PHXI02:UNITS AND MEASUREMENTS

367286 Consider two physical quantities \(A\) and \(B\) related to each other as \(E=\dfrac{B-x^{2}}{A t}\) where \(E,x\) and \(t\) have dimensions of energy, length and time respectively.The dimension of \(AB\) is

1 \(L^{0} M^{-1} T^{1}\)
2 \(L^{-2} M^{1} T^{0}\)
3 \(L^{2} M^{-1} T^{1}\)
4 \(L^{-2} M^{-1} T^{1}\)
PHXI02:UNITS AND MEASUREMENTS

367287 Distance \({Z}\) travelled by a particle is defined by \({Z=\alpha+\beta t+\gamma t^{2}}\). Dimensions of \({\gamma}\) are

1 \({\left[{LT}^{-1}\right]}\)
2 \({\left[{L}^{-1} {~T}\right]}\)
3 \({\left[{LT}^{-2}\right]}\)
4 \({\left[{LT}^{2}\right]}\)
PHXI02:UNITS AND MEASUREMENTS

367288 The dimension of physical quantity \(X\) in the equation force \(=\dfrac{X}{\sqrt{\text { Density }}}\) is given by:

1 \(M^{1} L^{4} T^{-2}\)
2 \(M^{2} L^{-2} T^{-1}\)
3 \(M^{3 / 2} L^{-1 / 2} T^{-2}\)
4 \(M^{1} L^{-2} T^{-1}\)