363905
An atom of mass number \(A\) and atomic number \(Z\) emits successively \(a\) \(\gamma \)-ray, a \(\beta \)-particle, and \(\alpha \)-particle and \(a\) \(\gamma \)-ray. The mass number and the atomic number of the end product are:
1 \(A - 4,Z - A\)
2 \(A,Z + 1\)
3 \(A - 4,Z + 2\)
4 \(A - 4,Z - 1\)
Explanation:
When an atom of mass number \(A\) and atomic number \(Z\) emits \(\gamma \)-rays, no change take place in atomic and mass number, but when a \(\beta \)-particle is emitted, atomic mass number remain same, but atomic number increase by 1. When an alpha particle is emitted, atomic number is decreased by 2 and atomic mass number is decreased by 4. \(_Z^A{X^ * }\xrightarrow{{\gamma - ray}}_Z^AX\xrightarrow{{\beta - particle}}_{Z + 1}^AY\xrightarrow{{\alpha - particle}}\) \(_{Z - 1}^{A - 4}{Z^ * }\xrightarrow{{\gamma - ray}}_{Z - 1}^{A - 4}Z\)
PHXII13:NUCLEI
363906
Neutron decay in free space is given as follows: \(_0{n^1}{ \to _1}{P^1}{ + _{ - 1}}{e^0} + [\,]\) Then the parenthesis represents a
1 Antineutrino
2 Graviton
3 Photon
4 Neutrino
Explanation:
An electron is accompained by an antineutrino.
PHXII13:NUCLEI
363907
A nucleus of mass \(214\,amu\) at rest emits an \(\alpha\) - particle. Kinetic energy of the \(\alpha\) - particle is \(6.7\,MeV\). The recoil energy of the daughter nucleus is
1 \(1.0\,MeV\)
2 \(0.5\,MeV\)
3 \(0.25\,MeV\)
4 \(0.125\,MeV\)
Explanation:
\({p_{1}}\) (momentum of alpha particle) \({+p_{2}}\) (momentum of daughter nucleus \({=0}\) (initial momentum) \({\Rightarrow p_{1}=-p_{2}}\) For \({\alpha}\)-particle \({\dfrac{p_{1}^{2}}{2 m}=6.7 {MeV}}\) For daughter nucleus, \({E=\dfrac{p_{2}{ }^{2}}{2 U}}\) \({\Rightarrow \dfrac{E}{6.7}=\dfrac{m}{M}}\) \({\Rightarrow \dfrac{E}{6.7}=\dfrac{4}{214}}\) \({\Rightarrow E=0.125 {MeV}}\)
PHXII13:NUCLEI
363908
\(_{82}^{290}X\xrightarrow{\alpha }Y\xrightarrow{{{e^ + }}}Z\xrightarrow{{{\beta ^ - }}}P\xrightarrow{{{e^ - }}}Q\) In the nuclear emission stated above, the mass number and atomic number of the product \(Q\) respectively, are
1 280, 81
2 286, 80
3 288, 82
4 286, 81
Explanation:
\({{ }_{82}^{290} {X} \xrightarrow{\alpha}{ }_{80}^{286} Y \xrightarrow{e^{+}}{ }_{79}^{286} {Z} \xrightarrow{\beta^{-}}}\) \({{ }_{80}^{286} P \xrightarrow{e^{-}}{ }_{81}^{286} Q}\) \({A=286}\) and \({Z=81}\)
NEET - 2024
PHXII13:NUCLEI
363909
In the nuclear reaction \(_{85}{X^{297}} \to Y + 4\alpha ,Y\) is
1 \(_{77}{Y^{281}}\)
2 \(_{76}{Y^{287}}\)
3 \(_{77}{Y^{285}}\)
4 \(_{77}{Y^{289}}\)
Explanation:
\({}_{85}{X^{297}}{ \to _A}{Y^B} + {4_2}{\alpha ^4}\) By equating the atomic and mass numbers \(85 = A + 8 \Rightarrow A = 77\) \(297 = B + 16 \Rightarrow B = 281\)
363905
An atom of mass number \(A\) and atomic number \(Z\) emits successively \(a\) \(\gamma \)-ray, a \(\beta \)-particle, and \(\alpha \)-particle and \(a\) \(\gamma \)-ray. The mass number and the atomic number of the end product are:
1 \(A - 4,Z - A\)
2 \(A,Z + 1\)
3 \(A - 4,Z + 2\)
4 \(A - 4,Z - 1\)
Explanation:
When an atom of mass number \(A\) and atomic number \(Z\) emits \(\gamma \)-rays, no change take place in atomic and mass number, but when a \(\beta \)-particle is emitted, atomic mass number remain same, but atomic number increase by 1. When an alpha particle is emitted, atomic number is decreased by 2 and atomic mass number is decreased by 4. \(_Z^A{X^ * }\xrightarrow{{\gamma - ray}}_Z^AX\xrightarrow{{\beta - particle}}_{Z + 1}^AY\xrightarrow{{\alpha - particle}}\) \(_{Z - 1}^{A - 4}{Z^ * }\xrightarrow{{\gamma - ray}}_{Z - 1}^{A - 4}Z\)
PHXII13:NUCLEI
363906
Neutron decay in free space is given as follows: \(_0{n^1}{ \to _1}{P^1}{ + _{ - 1}}{e^0} + [\,]\) Then the parenthesis represents a
1 Antineutrino
2 Graviton
3 Photon
4 Neutrino
Explanation:
An electron is accompained by an antineutrino.
PHXII13:NUCLEI
363907
A nucleus of mass \(214\,amu\) at rest emits an \(\alpha\) - particle. Kinetic energy of the \(\alpha\) - particle is \(6.7\,MeV\). The recoil energy of the daughter nucleus is
1 \(1.0\,MeV\)
2 \(0.5\,MeV\)
3 \(0.25\,MeV\)
4 \(0.125\,MeV\)
Explanation:
\({p_{1}}\) (momentum of alpha particle) \({+p_{2}}\) (momentum of daughter nucleus \({=0}\) (initial momentum) \({\Rightarrow p_{1}=-p_{2}}\) For \({\alpha}\)-particle \({\dfrac{p_{1}^{2}}{2 m}=6.7 {MeV}}\) For daughter nucleus, \({E=\dfrac{p_{2}{ }^{2}}{2 U}}\) \({\Rightarrow \dfrac{E}{6.7}=\dfrac{m}{M}}\) \({\Rightarrow \dfrac{E}{6.7}=\dfrac{4}{214}}\) \({\Rightarrow E=0.125 {MeV}}\)
PHXII13:NUCLEI
363908
\(_{82}^{290}X\xrightarrow{\alpha }Y\xrightarrow{{{e^ + }}}Z\xrightarrow{{{\beta ^ - }}}P\xrightarrow{{{e^ - }}}Q\) In the nuclear emission stated above, the mass number and atomic number of the product \(Q\) respectively, are
1 280, 81
2 286, 80
3 288, 82
4 286, 81
Explanation:
\({{ }_{82}^{290} {X} \xrightarrow{\alpha}{ }_{80}^{286} Y \xrightarrow{e^{+}}{ }_{79}^{286} {Z} \xrightarrow{\beta^{-}}}\) \({{ }_{80}^{286} P \xrightarrow{e^{-}}{ }_{81}^{286} Q}\) \({A=286}\) and \({Z=81}\)
NEET - 2024
PHXII13:NUCLEI
363909
In the nuclear reaction \(_{85}{X^{297}} \to Y + 4\alpha ,Y\) is
1 \(_{77}{Y^{281}}\)
2 \(_{76}{Y^{287}}\)
3 \(_{77}{Y^{285}}\)
4 \(_{77}{Y^{289}}\)
Explanation:
\({}_{85}{X^{297}}{ \to _A}{Y^B} + {4_2}{\alpha ^4}\) By equating the atomic and mass numbers \(85 = A + 8 \Rightarrow A = 77\) \(297 = B + 16 \Rightarrow B = 281\)
363905
An atom of mass number \(A\) and atomic number \(Z\) emits successively \(a\) \(\gamma \)-ray, a \(\beta \)-particle, and \(\alpha \)-particle and \(a\) \(\gamma \)-ray. The mass number and the atomic number of the end product are:
1 \(A - 4,Z - A\)
2 \(A,Z + 1\)
3 \(A - 4,Z + 2\)
4 \(A - 4,Z - 1\)
Explanation:
When an atom of mass number \(A\) and atomic number \(Z\) emits \(\gamma \)-rays, no change take place in atomic and mass number, but when a \(\beta \)-particle is emitted, atomic mass number remain same, but atomic number increase by 1. When an alpha particle is emitted, atomic number is decreased by 2 and atomic mass number is decreased by 4. \(_Z^A{X^ * }\xrightarrow{{\gamma - ray}}_Z^AX\xrightarrow{{\beta - particle}}_{Z + 1}^AY\xrightarrow{{\alpha - particle}}\) \(_{Z - 1}^{A - 4}{Z^ * }\xrightarrow{{\gamma - ray}}_{Z - 1}^{A - 4}Z\)
PHXII13:NUCLEI
363906
Neutron decay in free space is given as follows: \(_0{n^1}{ \to _1}{P^1}{ + _{ - 1}}{e^0} + [\,]\) Then the parenthesis represents a
1 Antineutrino
2 Graviton
3 Photon
4 Neutrino
Explanation:
An electron is accompained by an antineutrino.
PHXII13:NUCLEI
363907
A nucleus of mass \(214\,amu\) at rest emits an \(\alpha\) - particle. Kinetic energy of the \(\alpha\) - particle is \(6.7\,MeV\). The recoil energy of the daughter nucleus is
1 \(1.0\,MeV\)
2 \(0.5\,MeV\)
3 \(0.25\,MeV\)
4 \(0.125\,MeV\)
Explanation:
\({p_{1}}\) (momentum of alpha particle) \({+p_{2}}\) (momentum of daughter nucleus \({=0}\) (initial momentum) \({\Rightarrow p_{1}=-p_{2}}\) For \({\alpha}\)-particle \({\dfrac{p_{1}^{2}}{2 m}=6.7 {MeV}}\) For daughter nucleus, \({E=\dfrac{p_{2}{ }^{2}}{2 U}}\) \({\Rightarrow \dfrac{E}{6.7}=\dfrac{m}{M}}\) \({\Rightarrow \dfrac{E}{6.7}=\dfrac{4}{214}}\) \({\Rightarrow E=0.125 {MeV}}\)
PHXII13:NUCLEI
363908
\(_{82}^{290}X\xrightarrow{\alpha }Y\xrightarrow{{{e^ + }}}Z\xrightarrow{{{\beta ^ - }}}P\xrightarrow{{{e^ - }}}Q\) In the nuclear emission stated above, the mass number and atomic number of the product \(Q\) respectively, are
1 280, 81
2 286, 80
3 288, 82
4 286, 81
Explanation:
\({{ }_{82}^{290} {X} \xrightarrow{\alpha}{ }_{80}^{286} Y \xrightarrow{e^{+}}{ }_{79}^{286} {Z} \xrightarrow{\beta^{-}}}\) \({{ }_{80}^{286} P \xrightarrow{e^{-}}{ }_{81}^{286} Q}\) \({A=286}\) and \({Z=81}\)
NEET - 2024
PHXII13:NUCLEI
363909
In the nuclear reaction \(_{85}{X^{297}} \to Y + 4\alpha ,Y\) is
1 \(_{77}{Y^{281}}\)
2 \(_{76}{Y^{287}}\)
3 \(_{77}{Y^{285}}\)
4 \(_{77}{Y^{289}}\)
Explanation:
\({}_{85}{X^{297}}{ \to _A}{Y^B} + {4_2}{\alpha ^4}\) By equating the atomic and mass numbers \(85 = A + 8 \Rightarrow A = 77\) \(297 = B + 16 \Rightarrow B = 281\)
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
PHXII13:NUCLEI
363905
An atom of mass number \(A\) and atomic number \(Z\) emits successively \(a\) \(\gamma \)-ray, a \(\beta \)-particle, and \(\alpha \)-particle and \(a\) \(\gamma \)-ray. The mass number and the atomic number of the end product are:
1 \(A - 4,Z - A\)
2 \(A,Z + 1\)
3 \(A - 4,Z + 2\)
4 \(A - 4,Z - 1\)
Explanation:
When an atom of mass number \(A\) and atomic number \(Z\) emits \(\gamma \)-rays, no change take place in atomic and mass number, but when a \(\beta \)-particle is emitted, atomic mass number remain same, but atomic number increase by 1. When an alpha particle is emitted, atomic number is decreased by 2 and atomic mass number is decreased by 4. \(_Z^A{X^ * }\xrightarrow{{\gamma - ray}}_Z^AX\xrightarrow{{\beta - particle}}_{Z + 1}^AY\xrightarrow{{\alpha - particle}}\) \(_{Z - 1}^{A - 4}{Z^ * }\xrightarrow{{\gamma - ray}}_{Z - 1}^{A - 4}Z\)
PHXII13:NUCLEI
363906
Neutron decay in free space is given as follows: \(_0{n^1}{ \to _1}{P^1}{ + _{ - 1}}{e^0} + [\,]\) Then the parenthesis represents a
1 Antineutrino
2 Graviton
3 Photon
4 Neutrino
Explanation:
An electron is accompained by an antineutrino.
PHXII13:NUCLEI
363907
A nucleus of mass \(214\,amu\) at rest emits an \(\alpha\) - particle. Kinetic energy of the \(\alpha\) - particle is \(6.7\,MeV\). The recoil energy of the daughter nucleus is
1 \(1.0\,MeV\)
2 \(0.5\,MeV\)
3 \(0.25\,MeV\)
4 \(0.125\,MeV\)
Explanation:
\({p_{1}}\) (momentum of alpha particle) \({+p_{2}}\) (momentum of daughter nucleus \({=0}\) (initial momentum) \({\Rightarrow p_{1}=-p_{2}}\) For \({\alpha}\)-particle \({\dfrac{p_{1}^{2}}{2 m}=6.7 {MeV}}\) For daughter nucleus, \({E=\dfrac{p_{2}{ }^{2}}{2 U}}\) \({\Rightarrow \dfrac{E}{6.7}=\dfrac{m}{M}}\) \({\Rightarrow \dfrac{E}{6.7}=\dfrac{4}{214}}\) \({\Rightarrow E=0.125 {MeV}}\)
PHXII13:NUCLEI
363908
\(_{82}^{290}X\xrightarrow{\alpha }Y\xrightarrow{{{e^ + }}}Z\xrightarrow{{{\beta ^ - }}}P\xrightarrow{{{e^ - }}}Q\) In the nuclear emission stated above, the mass number and atomic number of the product \(Q\) respectively, are
1 280, 81
2 286, 80
3 288, 82
4 286, 81
Explanation:
\({{ }_{82}^{290} {X} \xrightarrow{\alpha}{ }_{80}^{286} Y \xrightarrow{e^{+}}{ }_{79}^{286} {Z} \xrightarrow{\beta^{-}}}\) \({{ }_{80}^{286} P \xrightarrow{e^{-}}{ }_{81}^{286} Q}\) \({A=286}\) and \({Z=81}\)
NEET - 2024
PHXII13:NUCLEI
363909
In the nuclear reaction \(_{85}{X^{297}} \to Y + 4\alpha ,Y\) is
1 \(_{77}{Y^{281}}\)
2 \(_{76}{Y^{287}}\)
3 \(_{77}{Y^{285}}\)
4 \(_{77}{Y^{289}}\)
Explanation:
\({}_{85}{X^{297}}{ \to _A}{Y^B} + {4_2}{\alpha ^4}\) By equating the atomic and mass numbers \(85 = A + 8 \Rightarrow A = 77\) \(297 = B + 16 \Rightarrow B = 281\)
363905
An atom of mass number \(A\) and atomic number \(Z\) emits successively \(a\) \(\gamma \)-ray, a \(\beta \)-particle, and \(\alpha \)-particle and \(a\) \(\gamma \)-ray. The mass number and the atomic number of the end product are:
1 \(A - 4,Z - A\)
2 \(A,Z + 1\)
3 \(A - 4,Z + 2\)
4 \(A - 4,Z - 1\)
Explanation:
When an atom of mass number \(A\) and atomic number \(Z\) emits \(\gamma \)-rays, no change take place in atomic and mass number, but when a \(\beta \)-particle is emitted, atomic mass number remain same, but atomic number increase by 1. When an alpha particle is emitted, atomic number is decreased by 2 and atomic mass number is decreased by 4. \(_Z^A{X^ * }\xrightarrow{{\gamma - ray}}_Z^AX\xrightarrow{{\beta - particle}}_{Z + 1}^AY\xrightarrow{{\alpha - particle}}\) \(_{Z - 1}^{A - 4}{Z^ * }\xrightarrow{{\gamma - ray}}_{Z - 1}^{A - 4}Z\)
PHXII13:NUCLEI
363906
Neutron decay in free space is given as follows: \(_0{n^1}{ \to _1}{P^1}{ + _{ - 1}}{e^0} + [\,]\) Then the parenthesis represents a
1 Antineutrino
2 Graviton
3 Photon
4 Neutrino
Explanation:
An electron is accompained by an antineutrino.
PHXII13:NUCLEI
363907
A nucleus of mass \(214\,amu\) at rest emits an \(\alpha\) - particle. Kinetic energy of the \(\alpha\) - particle is \(6.7\,MeV\). The recoil energy of the daughter nucleus is
1 \(1.0\,MeV\)
2 \(0.5\,MeV\)
3 \(0.25\,MeV\)
4 \(0.125\,MeV\)
Explanation:
\({p_{1}}\) (momentum of alpha particle) \({+p_{2}}\) (momentum of daughter nucleus \({=0}\) (initial momentum) \({\Rightarrow p_{1}=-p_{2}}\) For \({\alpha}\)-particle \({\dfrac{p_{1}^{2}}{2 m}=6.7 {MeV}}\) For daughter nucleus, \({E=\dfrac{p_{2}{ }^{2}}{2 U}}\) \({\Rightarrow \dfrac{E}{6.7}=\dfrac{m}{M}}\) \({\Rightarrow \dfrac{E}{6.7}=\dfrac{4}{214}}\) \({\Rightarrow E=0.125 {MeV}}\)
PHXII13:NUCLEI
363908
\(_{82}^{290}X\xrightarrow{\alpha }Y\xrightarrow{{{e^ + }}}Z\xrightarrow{{{\beta ^ - }}}P\xrightarrow{{{e^ - }}}Q\) In the nuclear emission stated above, the mass number and atomic number of the product \(Q\) respectively, are
1 280, 81
2 286, 80
3 288, 82
4 286, 81
Explanation:
\({{ }_{82}^{290} {X} \xrightarrow{\alpha}{ }_{80}^{286} Y \xrightarrow{e^{+}}{ }_{79}^{286} {Z} \xrightarrow{\beta^{-}}}\) \({{ }_{80}^{286} P \xrightarrow{e^{-}}{ }_{81}^{286} Q}\) \({A=286}\) and \({Z=81}\)
NEET - 2024
PHXII13:NUCLEI
363909
In the nuclear reaction \(_{85}{X^{297}} \to Y + 4\alpha ,Y\) is
1 \(_{77}{Y^{281}}\)
2 \(_{76}{Y^{287}}\)
3 \(_{77}{Y^{285}}\)
4 \(_{77}{Y^{289}}\)
Explanation:
\({}_{85}{X^{297}}{ \to _A}{Y^B} + {4_2}{\alpha ^4}\) By equating the atomic and mass numbers \(85 = A + 8 \Rightarrow A = 77\) \(297 = B + 16 \Rightarrow B = 281\)