Radioactivity
PHXII13:NUCLEI

363905 An atom of mass number \(A\) and atomic number \(Z\) emits successively \(a\) \(\gamma \)-ray, a \(\beta \)-particle, and \(\alpha \)-particle and \(a\) \(\gamma \)-ray. The mass number and the atomic number of the end product are:

1 \(A - 4,Z - A\)
2 \(A,Z + 1\)
3 \(A - 4,Z + 2\)
4 \(A - 4,Z - 1\)
PHXII13:NUCLEI

363906 Neutron decay in free space is given as follows:
\(_0{n^1}{ \to _1}{P^1}{ + _{ - 1}}{e^0} + [\,]\)
Then the parenthesis represents a

1 Antineutrino
2 Graviton
3 Photon
4 Neutrino
PHXII13:NUCLEI

363907 A nucleus of mass \(214\,amu\) at rest emits an
\(\alpha\) - particle. Kinetic energy of the \(\alpha\) - particle is \(6.7\,MeV\). The recoil energy of the daughter nucleus is

1 \(1.0\,MeV\)
2 \(0.5\,MeV\)
3 \(0.25\,MeV\)
4 \(0.125\,MeV\)
PHXII13:NUCLEI

363908 \(_{82}^{290}X\xrightarrow{\alpha }Y\xrightarrow{{{e^ + }}}Z\xrightarrow{{{\beta ^ - }}}P\xrightarrow{{{e^ - }}}Q\) In the nuclear emission stated above, the mass number and atomic number of the product \(Q\) respectively, are

1 280, 81
2 286, 80
3 288, 82
4 286, 81
PHXII13:NUCLEI

363909 In the nuclear reaction \(_{85}{X^{297}} \to Y + 4\alpha ,Y\) is

1 \(_{77}{Y^{281}}\)
2 \(_{76}{Y^{287}}\)
3 \(_{77}{Y^{285}}\)
4 \(_{77}{Y^{289}}\)
PHXII13:NUCLEI

363905 An atom of mass number \(A\) and atomic number \(Z\) emits successively \(a\) \(\gamma \)-ray, a \(\beta \)-particle, and \(\alpha \)-particle and \(a\) \(\gamma \)-ray. The mass number and the atomic number of the end product are:

1 \(A - 4,Z - A\)
2 \(A,Z + 1\)
3 \(A - 4,Z + 2\)
4 \(A - 4,Z - 1\)
PHXII13:NUCLEI

363906 Neutron decay in free space is given as follows:
\(_0{n^1}{ \to _1}{P^1}{ + _{ - 1}}{e^0} + [\,]\)
Then the parenthesis represents a

1 Antineutrino
2 Graviton
3 Photon
4 Neutrino
PHXII13:NUCLEI

363907 A nucleus of mass \(214\,amu\) at rest emits an
\(\alpha\) - particle. Kinetic energy of the \(\alpha\) - particle is \(6.7\,MeV\). The recoil energy of the daughter nucleus is

1 \(1.0\,MeV\)
2 \(0.5\,MeV\)
3 \(0.25\,MeV\)
4 \(0.125\,MeV\)
PHXII13:NUCLEI

363908 \(_{82}^{290}X\xrightarrow{\alpha }Y\xrightarrow{{{e^ + }}}Z\xrightarrow{{{\beta ^ - }}}P\xrightarrow{{{e^ - }}}Q\) In the nuclear emission stated above, the mass number and atomic number of the product \(Q\) respectively, are

1 280, 81
2 286, 80
3 288, 82
4 286, 81
PHXII13:NUCLEI

363909 In the nuclear reaction \(_{85}{X^{297}} \to Y + 4\alpha ,Y\) is

1 \(_{77}{Y^{281}}\)
2 \(_{76}{Y^{287}}\)
3 \(_{77}{Y^{285}}\)
4 \(_{77}{Y^{289}}\)
PHXII13:NUCLEI

363905 An atom of mass number \(A\) and atomic number \(Z\) emits successively \(a\) \(\gamma \)-ray, a \(\beta \)-particle, and \(\alpha \)-particle and \(a\) \(\gamma \)-ray. The mass number and the atomic number of the end product are:

1 \(A - 4,Z - A\)
2 \(A,Z + 1\)
3 \(A - 4,Z + 2\)
4 \(A - 4,Z - 1\)
PHXII13:NUCLEI

363906 Neutron decay in free space is given as follows:
\(_0{n^1}{ \to _1}{P^1}{ + _{ - 1}}{e^0} + [\,]\)
Then the parenthesis represents a

1 Antineutrino
2 Graviton
3 Photon
4 Neutrino
PHXII13:NUCLEI

363907 A nucleus of mass \(214\,amu\) at rest emits an
\(\alpha\) - particle. Kinetic energy of the \(\alpha\) - particle is \(6.7\,MeV\). The recoil energy of the daughter nucleus is

1 \(1.0\,MeV\)
2 \(0.5\,MeV\)
3 \(0.25\,MeV\)
4 \(0.125\,MeV\)
PHXII13:NUCLEI

363908 \(_{82}^{290}X\xrightarrow{\alpha }Y\xrightarrow{{{e^ + }}}Z\xrightarrow{{{\beta ^ - }}}P\xrightarrow{{{e^ - }}}Q\) In the nuclear emission stated above, the mass number and atomic number of the product \(Q\) respectively, are

1 280, 81
2 286, 80
3 288, 82
4 286, 81
PHXII13:NUCLEI

363909 In the nuclear reaction \(_{85}{X^{297}} \to Y + 4\alpha ,Y\) is

1 \(_{77}{Y^{281}}\)
2 \(_{76}{Y^{287}}\)
3 \(_{77}{Y^{285}}\)
4 \(_{77}{Y^{289}}\)
PHXII13:NUCLEI

363905 An atom of mass number \(A\) and atomic number \(Z\) emits successively \(a\) \(\gamma \)-ray, a \(\beta \)-particle, and \(\alpha \)-particle and \(a\) \(\gamma \)-ray. The mass number and the atomic number of the end product are:

1 \(A - 4,Z - A\)
2 \(A,Z + 1\)
3 \(A - 4,Z + 2\)
4 \(A - 4,Z - 1\)
PHXII13:NUCLEI

363906 Neutron decay in free space is given as follows:
\(_0{n^1}{ \to _1}{P^1}{ + _{ - 1}}{e^0} + [\,]\)
Then the parenthesis represents a

1 Antineutrino
2 Graviton
3 Photon
4 Neutrino
PHXII13:NUCLEI

363907 A nucleus of mass \(214\,amu\) at rest emits an
\(\alpha\) - particle. Kinetic energy of the \(\alpha\) - particle is \(6.7\,MeV\). The recoil energy of the daughter nucleus is

1 \(1.0\,MeV\)
2 \(0.5\,MeV\)
3 \(0.25\,MeV\)
4 \(0.125\,MeV\)
PHXII13:NUCLEI

363908 \(_{82}^{290}X\xrightarrow{\alpha }Y\xrightarrow{{{e^ + }}}Z\xrightarrow{{{\beta ^ - }}}P\xrightarrow{{{e^ - }}}Q\) In the nuclear emission stated above, the mass number and atomic number of the product \(Q\) respectively, are

1 280, 81
2 286, 80
3 288, 82
4 286, 81
PHXII13:NUCLEI

363909 In the nuclear reaction \(_{85}{X^{297}} \to Y + 4\alpha ,Y\) is

1 \(_{77}{Y^{281}}\)
2 \(_{76}{Y^{287}}\)
3 \(_{77}{Y^{285}}\)
4 \(_{77}{Y^{289}}\)
PHXII13:NUCLEI

363905 An atom of mass number \(A\) and atomic number \(Z\) emits successively \(a\) \(\gamma \)-ray, a \(\beta \)-particle, and \(\alpha \)-particle and \(a\) \(\gamma \)-ray. The mass number and the atomic number of the end product are:

1 \(A - 4,Z - A\)
2 \(A,Z + 1\)
3 \(A - 4,Z + 2\)
4 \(A - 4,Z - 1\)
PHXII13:NUCLEI

363906 Neutron decay in free space is given as follows:
\(_0{n^1}{ \to _1}{P^1}{ + _{ - 1}}{e^0} + [\,]\)
Then the parenthesis represents a

1 Antineutrino
2 Graviton
3 Photon
4 Neutrino
PHXII13:NUCLEI

363907 A nucleus of mass \(214\,amu\) at rest emits an
\(\alpha\) - particle. Kinetic energy of the \(\alpha\) - particle is \(6.7\,MeV\). The recoil energy of the daughter nucleus is

1 \(1.0\,MeV\)
2 \(0.5\,MeV\)
3 \(0.25\,MeV\)
4 \(0.125\,MeV\)
PHXII13:NUCLEI

363908 \(_{82}^{290}X\xrightarrow{\alpha }Y\xrightarrow{{{e^ + }}}Z\xrightarrow{{{\beta ^ - }}}P\xrightarrow{{{e^ - }}}Q\) In the nuclear emission stated above, the mass number and atomic number of the product \(Q\) respectively, are

1 280, 81
2 286, 80
3 288, 82
4 286, 81
PHXII13:NUCLEI

363909 In the nuclear reaction \(_{85}{X^{297}} \to Y + 4\alpha ,Y\) is

1 \(_{77}{Y^{281}}\)
2 \(_{76}{Y^{287}}\)
3 \(_{77}{Y^{285}}\)
4 \(_{77}{Y^{289}}\)