363630
\({ }_{92}^{238} A \rightarrow{ }_{90}^{234} B+{ }_{2}^{4} D+Q\)
In the given nuclear reaction, the approximate amount of energy released will be
[Given,mass of
\(_{92}^{238}A = 238.05079 \times 931.5MeV/{c^2}\)
mass of \(_{90}^{234}B = 234.04363 \times 931.5MeV/{c^2},\)
mass of \(_2^4D = 4.00260 \times 931.5MeV/{c^2}\)
363630
\({ }_{92}^{238} A \rightarrow{ }_{90}^{234} B+{ }_{2}^{4} D+Q\)
In the given nuclear reaction, the approximate amount of energy released will be
[Given,mass of
\(_{92}^{238}A = 238.05079 \times 931.5MeV/{c^2}\)
mass of \(_{90}^{234}B = 234.04363 \times 931.5MeV/{c^2},\)
mass of \(_2^4D = 4.00260 \times 931.5MeV/{c^2}\)
363630
\({ }_{92}^{238} A \rightarrow{ }_{90}^{234} B+{ }_{2}^{4} D+Q\)
In the given nuclear reaction, the approximate amount of energy released will be
[Given,mass of
\(_{92}^{238}A = 238.05079 \times 931.5MeV/{c^2}\)
mass of \(_{90}^{234}B = 234.04363 \times 931.5MeV/{c^2},\)
mass of \(_2^4D = 4.00260 \times 931.5MeV/{c^2}\)
363630
\({ }_{92}^{238} A \rightarrow{ }_{90}^{234} B+{ }_{2}^{4} D+Q\)
In the given nuclear reaction, the approximate amount of energy released will be
[Given,mass of
\(_{92}^{238}A = 238.05079 \times 931.5MeV/{c^2}\)
mass of \(_{90}^{234}B = 234.04363 \times 931.5MeV/{c^2},\)
mass of \(_2^4D = 4.00260 \times 931.5MeV/{c^2}\)