Electromagnetic Waves
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
PHXI15:WAVES

358891 In an electromagnetic wave in free space the root mean square value of the electric field is \({E_{rms}} = 6\;V/m\). The peak value of the magnetic field is :-

1 \(2.83 \times {10^{ - 8}}\;T\)
2 \(0.70 \times {10^{ - 8}}\;T\)
3 \(4.23 \times {10^{ - 8}}\;T\)
4 \(1.41 \times {10^{ - 8}}\;T\)
PHXI15:WAVES

358892 The ratio of the magnitudes of electric field to the magnetic field of an electromagnetic wave is of the order of

1 \({10^{ - 5}}\;m{s^{ - 1}}\)
2 \({10^8}\;m{s^{ - 1}}\)
3 \({10^{ - 8}}\;m{s^{ - 1}}\)
4 \({10^5}\;m{s^{ - 1}}\)
PHXI15:WAVES

358893 A plane \(E M\) wave is propagating along \(x\) direction. It has a wavelength of \(4\,mm.\) If electric field is in \(y\) direction with the maximum magnitude of \(60\,V{m^{ - 1}},\) the equation for magnetic field is

1 \(\vec{B}_{z}=2 \times 10^{-7} \sin \left[\dfrac{\pi}{2} \times 10^{3}\left(x-3 \times 10^{8} t\right)\right] \hat{k} T\)
2 \(\vec{B}_{x}=60 \sin \left[\dfrac{\pi}{2}\left(x-3 \times 10^{8} t\right)\right] \hat{i} T\)
3 \(\vec{B}_{z}=60 \sin \left[\dfrac{\pi}{2}\left(x-3 \times 10^{8} t\right)\right] \hat{k} T\)
4 \(\vec{B}_{z}=2 \times 10^{-7} \sin \left[\dfrac{\pi}{2}\left(x-3 \times 10^{8} t\right)\right] \hat{k} T\)
PHXI15:WAVES

358894 The electric field of an electromagnetic wave in free space is represented as \(\vec{E}=E_{0} \cos (\omega t-k z) \hat{i}\). The corresponding magnetic induction vector will be

1 \(\vec{B}=\dfrac{E_{0}}{c} \cos (\omega t-k z) \hat{j}\)
2 \(\vec{B}=E_{0} c \cos (\omega t+k z) \hat{j}\)
3 \(\vec{B}=E_{0} c \cos (\omega t-k z) \hat{j}\)
4 \(\vec{B}=\dfrac{E_{0}}{c} \cos (\omega t+k z) \hat{j}\)
PHXI15:WAVES

358891 In an electromagnetic wave in free space the root mean square value of the electric field is \({E_{rms}} = 6\;V/m\). The peak value of the magnetic field is :-

1 \(2.83 \times {10^{ - 8}}\;T\)
2 \(0.70 \times {10^{ - 8}}\;T\)
3 \(4.23 \times {10^{ - 8}}\;T\)
4 \(1.41 \times {10^{ - 8}}\;T\)
PHXI15:WAVES

358892 The ratio of the magnitudes of electric field to the magnetic field of an electromagnetic wave is of the order of

1 \({10^{ - 5}}\;m{s^{ - 1}}\)
2 \({10^8}\;m{s^{ - 1}}\)
3 \({10^{ - 8}}\;m{s^{ - 1}}\)
4 \({10^5}\;m{s^{ - 1}}\)
PHXI15:WAVES

358893 A plane \(E M\) wave is propagating along \(x\) direction. It has a wavelength of \(4\,mm.\) If electric field is in \(y\) direction with the maximum magnitude of \(60\,V{m^{ - 1}},\) the equation for magnetic field is

1 \(\vec{B}_{z}=2 \times 10^{-7} \sin \left[\dfrac{\pi}{2} \times 10^{3}\left(x-3 \times 10^{8} t\right)\right] \hat{k} T\)
2 \(\vec{B}_{x}=60 \sin \left[\dfrac{\pi}{2}\left(x-3 \times 10^{8} t\right)\right] \hat{i} T\)
3 \(\vec{B}_{z}=60 \sin \left[\dfrac{\pi}{2}\left(x-3 \times 10^{8} t\right)\right] \hat{k} T\)
4 \(\vec{B}_{z}=2 \times 10^{-7} \sin \left[\dfrac{\pi}{2}\left(x-3 \times 10^{8} t\right)\right] \hat{k} T\)
PHXI15:WAVES

358894 The electric field of an electromagnetic wave in free space is represented as \(\vec{E}=E_{0} \cos (\omega t-k z) \hat{i}\). The corresponding magnetic induction vector will be

1 \(\vec{B}=\dfrac{E_{0}}{c} \cos (\omega t-k z) \hat{j}\)
2 \(\vec{B}=E_{0} c \cos (\omega t+k z) \hat{j}\)
3 \(\vec{B}=E_{0} c \cos (\omega t-k z) \hat{j}\)
4 \(\vec{B}=\dfrac{E_{0}}{c} \cos (\omega t+k z) \hat{j}\)
PHXI15:WAVES

358891 In an electromagnetic wave in free space the root mean square value of the electric field is \({E_{rms}} = 6\;V/m\). The peak value of the magnetic field is :-

1 \(2.83 \times {10^{ - 8}}\;T\)
2 \(0.70 \times {10^{ - 8}}\;T\)
3 \(4.23 \times {10^{ - 8}}\;T\)
4 \(1.41 \times {10^{ - 8}}\;T\)
PHXI15:WAVES

358892 The ratio of the magnitudes of electric field to the magnetic field of an electromagnetic wave is of the order of

1 \({10^{ - 5}}\;m{s^{ - 1}}\)
2 \({10^8}\;m{s^{ - 1}}\)
3 \({10^{ - 8}}\;m{s^{ - 1}}\)
4 \({10^5}\;m{s^{ - 1}}\)
PHXI15:WAVES

358893 A plane \(E M\) wave is propagating along \(x\) direction. It has a wavelength of \(4\,mm.\) If electric field is in \(y\) direction with the maximum magnitude of \(60\,V{m^{ - 1}},\) the equation for magnetic field is

1 \(\vec{B}_{z}=2 \times 10^{-7} \sin \left[\dfrac{\pi}{2} \times 10^{3}\left(x-3 \times 10^{8} t\right)\right] \hat{k} T\)
2 \(\vec{B}_{x}=60 \sin \left[\dfrac{\pi}{2}\left(x-3 \times 10^{8} t\right)\right] \hat{i} T\)
3 \(\vec{B}_{z}=60 \sin \left[\dfrac{\pi}{2}\left(x-3 \times 10^{8} t\right)\right] \hat{k} T\)
4 \(\vec{B}_{z}=2 \times 10^{-7} \sin \left[\dfrac{\pi}{2}\left(x-3 \times 10^{8} t\right)\right] \hat{k} T\)
PHXI15:WAVES

358894 The electric field of an electromagnetic wave in free space is represented as \(\vec{E}=E_{0} \cos (\omega t-k z) \hat{i}\). The corresponding magnetic induction vector will be

1 \(\vec{B}=\dfrac{E_{0}}{c} \cos (\omega t-k z) \hat{j}\)
2 \(\vec{B}=E_{0} c \cos (\omega t+k z) \hat{j}\)
3 \(\vec{B}=E_{0} c \cos (\omega t-k z) \hat{j}\)
4 \(\vec{B}=\dfrac{E_{0}}{c} \cos (\omega t+k z) \hat{j}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
PHXI15:WAVES

358891 In an electromagnetic wave in free space the root mean square value of the electric field is \({E_{rms}} = 6\;V/m\). The peak value of the magnetic field is :-

1 \(2.83 \times {10^{ - 8}}\;T\)
2 \(0.70 \times {10^{ - 8}}\;T\)
3 \(4.23 \times {10^{ - 8}}\;T\)
4 \(1.41 \times {10^{ - 8}}\;T\)
PHXI15:WAVES

358892 The ratio of the magnitudes of electric field to the magnetic field of an electromagnetic wave is of the order of

1 \({10^{ - 5}}\;m{s^{ - 1}}\)
2 \({10^8}\;m{s^{ - 1}}\)
3 \({10^{ - 8}}\;m{s^{ - 1}}\)
4 \({10^5}\;m{s^{ - 1}}\)
PHXI15:WAVES

358893 A plane \(E M\) wave is propagating along \(x\) direction. It has a wavelength of \(4\,mm.\) If electric field is in \(y\) direction with the maximum magnitude of \(60\,V{m^{ - 1}},\) the equation for magnetic field is

1 \(\vec{B}_{z}=2 \times 10^{-7} \sin \left[\dfrac{\pi}{2} \times 10^{3}\left(x-3 \times 10^{8} t\right)\right] \hat{k} T\)
2 \(\vec{B}_{x}=60 \sin \left[\dfrac{\pi}{2}\left(x-3 \times 10^{8} t\right)\right] \hat{i} T\)
3 \(\vec{B}_{z}=60 \sin \left[\dfrac{\pi}{2}\left(x-3 \times 10^{8} t\right)\right] \hat{k} T\)
4 \(\vec{B}_{z}=2 \times 10^{-7} \sin \left[\dfrac{\pi}{2}\left(x-3 \times 10^{8} t\right)\right] \hat{k} T\)
PHXI15:WAVES

358894 The electric field of an electromagnetic wave in free space is represented as \(\vec{E}=E_{0} \cos (\omega t-k z) \hat{i}\). The corresponding magnetic induction vector will be

1 \(\vec{B}=\dfrac{E_{0}}{c} \cos (\omega t-k z) \hat{j}\)
2 \(\vec{B}=E_{0} c \cos (\omega t+k z) \hat{j}\)
3 \(\vec{B}=E_{0} c \cos (\omega t-k z) \hat{j}\)
4 \(\vec{B}=\dfrac{E_{0}}{c} \cos (\omega t+k z) \hat{j}\)