Electromagnetic Waves
PHXI15:WAVES

358886 The velocity of electromagnetic wave is along the direction of:

1 \(\vec{B}\)
2 \(\frac{{\overrightarrow E \times \overrightarrow B }}{{{\mu _0}}}\)
3 \(\frac{{\overrightarrow B \times \overrightarrow E }}{{{\mu _0}}}\)
4 \(E\)
PHXI15:WAVES

358887 In an apparatus, the electric field was found to oscillate with amplitude of \(18\;V/m\). The amplitude of the oscillating magnetic field will be

1 \(11 \times {10^{ - 11}}\;T\)
2 \(6 \times {10^{ - 8}}\;T\)
3 \(4 \times {10^{ - 6}}\;T\)
4 \(9 \times {10^{ - 9}}\;T\)
PHXI15:WAVES

358888 The electric field in an electromagnetic wave is given by \(\vec{E}=\hat{i} 40 \cos \omega\left(t-\dfrac{z}{c}\right) N C^{-1}\). The magnetic field induction of this wave is (in \(S I\) unit)

1 \(\vec{B}=\hat{k} \dfrac{40}{c} \cos \omega\left(t-\dfrac{z}{c}\right)\)
2 \(\vec{B}=\hat{i} \dfrac{40}{c} \cos \omega\left(t-\dfrac{z}{c}\right)\)
3 \(\vec{B}=\hat{j} 40 \cos \omega\left(t-\dfrac{z}{c}\right)\)
4 \(\vec{B}=\hat{j} \dfrac{40}{c} \cos \omega\left(t-\dfrac{z}{c}\right)\)
PHXI15:WAVES

358889 The amplitude of magnetic field in an electromagnetic wave propagating along \(y\)-axis is \(6.0 \times {10^{ - 7}}\;T\). The maximum value of electric field in the electromagnetic wave is

1 \(2 \times {10^{15}}V{m^{ - 1}}\)
2 \(6.0 \times {10^{ - 7}}\;V\;{m^{ - 1}}\)
3 \(5 \times {10^{14}}V{m^{ - 1}}\)
4 \(180\,V{m^{ - 1}}\)
PHXI15:WAVES

358890 In a plane electromagnetic wave travelling in free space, the elctric field component oscillates sinusoidally at a frequency of \(2.0 \times {10^{10}}\;Hz\) and amplitude \(48V{m^{ - 1}}\). Then the amplitude of oscillating magnetic field is: (Speed of light in free space \( = 3 \times {10^8}\;m{s^{ - 1}})\)

1 \(1.6 \times {10^8}\;T\)
2 \(1.6 \times {10^{ - 7}}\;T\)
3 \(1.6 \times {10^{ - 6}}\;T\)
4 \(1.6 \times {10^{ - 9}}\;T\)
PHXI15:WAVES

358886 The velocity of electromagnetic wave is along the direction of:

1 \(\vec{B}\)
2 \(\frac{{\overrightarrow E \times \overrightarrow B }}{{{\mu _0}}}\)
3 \(\frac{{\overrightarrow B \times \overrightarrow E }}{{{\mu _0}}}\)
4 \(E\)
PHXI15:WAVES

358887 In an apparatus, the electric field was found to oscillate with amplitude of \(18\;V/m\). The amplitude of the oscillating magnetic field will be

1 \(11 \times {10^{ - 11}}\;T\)
2 \(6 \times {10^{ - 8}}\;T\)
3 \(4 \times {10^{ - 6}}\;T\)
4 \(9 \times {10^{ - 9}}\;T\)
PHXI15:WAVES

358888 The electric field in an electromagnetic wave is given by \(\vec{E}=\hat{i} 40 \cos \omega\left(t-\dfrac{z}{c}\right) N C^{-1}\). The magnetic field induction of this wave is (in \(S I\) unit)

1 \(\vec{B}=\hat{k} \dfrac{40}{c} \cos \omega\left(t-\dfrac{z}{c}\right)\)
2 \(\vec{B}=\hat{i} \dfrac{40}{c} \cos \omega\left(t-\dfrac{z}{c}\right)\)
3 \(\vec{B}=\hat{j} 40 \cos \omega\left(t-\dfrac{z}{c}\right)\)
4 \(\vec{B}=\hat{j} \dfrac{40}{c} \cos \omega\left(t-\dfrac{z}{c}\right)\)
PHXI15:WAVES

358889 The amplitude of magnetic field in an electromagnetic wave propagating along \(y\)-axis is \(6.0 \times {10^{ - 7}}\;T\). The maximum value of electric field in the electromagnetic wave is

1 \(2 \times {10^{15}}V{m^{ - 1}}\)
2 \(6.0 \times {10^{ - 7}}\;V\;{m^{ - 1}}\)
3 \(5 \times {10^{14}}V{m^{ - 1}}\)
4 \(180\,V{m^{ - 1}}\)
PHXI15:WAVES

358890 In a plane electromagnetic wave travelling in free space, the elctric field component oscillates sinusoidally at a frequency of \(2.0 \times {10^{10}}\;Hz\) and amplitude \(48V{m^{ - 1}}\). Then the amplitude of oscillating magnetic field is: (Speed of light in free space \( = 3 \times {10^8}\;m{s^{ - 1}})\)

1 \(1.6 \times {10^8}\;T\)
2 \(1.6 \times {10^{ - 7}}\;T\)
3 \(1.6 \times {10^{ - 6}}\;T\)
4 \(1.6 \times {10^{ - 9}}\;T\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
PHXI15:WAVES

358886 The velocity of electromagnetic wave is along the direction of:

1 \(\vec{B}\)
2 \(\frac{{\overrightarrow E \times \overrightarrow B }}{{{\mu _0}}}\)
3 \(\frac{{\overrightarrow B \times \overrightarrow E }}{{{\mu _0}}}\)
4 \(E\)
PHXI15:WAVES

358887 In an apparatus, the electric field was found to oscillate with amplitude of \(18\;V/m\). The amplitude of the oscillating magnetic field will be

1 \(11 \times {10^{ - 11}}\;T\)
2 \(6 \times {10^{ - 8}}\;T\)
3 \(4 \times {10^{ - 6}}\;T\)
4 \(9 \times {10^{ - 9}}\;T\)
PHXI15:WAVES

358888 The electric field in an electromagnetic wave is given by \(\vec{E}=\hat{i} 40 \cos \omega\left(t-\dfrac{z}{c}\right) N C^{-1}\). The magnetic field induction of this wave is (in \(S I\) unit)

1 \(\vec{B}=\hat{k} \dfrac{40}{c} \cos \omega\left(t-\dfrac{z}{c}\right)\)
2 \(\vec{B}=\hat{i} \dfrac{40}{c} \cos \omega\left(t-\dfrac{z}{c}\right)\)
3 \(\vec{B}=\hat{j} 40 \cos \omega\left(t-\dfrac{z}{c}\right)\)
4 \(\vec{B}=\hat{j} \dfrac{40}{c} \cos \omega\left(t-\dfrac{z}{c}\right)\)
PHXI15:WAVES

358889 The amplitude of magnetic field in an electromagnetic wave propagating along \(y\)-axis is \(6.0 \times {10^{ - 7}}\;T\). The maximum value of electric field in the electromagnetic wave is

1 \(2 \times {10^{15}}V{m^{ - 1}}\)
2 \(6.0 \times {10^{ - 7}}\;V\;{m^{ - 1}}\)
3 \(5 \times {10^{14}}V{m^{ - 1}}\)
4 \(180\,V{m^{ - 1}}\)
PHXI15:WAVES

358890 In a plane electromagnetic wave travelling in free space, the elctric field component oscillates sinusoidally at a frequency of \(2.0 \times {10^{10}}\;Hz\) and amplitude \(48V{m^{ - 1}}\). Then the amplitude of oscillating magnetic field is: (Speed of light in free space \( = 3 \times {10^8}\;m{s^{ - 1}})\)

1 \(1.6 \times {10^8}\;T\)
2 \(1.6 \times {10^{ - 7}}\;T\)
3 \(1.6 \times {10^{ - 6}}\;T\)
4 \(1.6 \times {10^{ - 9}}\;T\)
PHXI15:WAVES

358886 The velocity of electromagnetic wave is along the direction of:

1 \(\vec{B}\)
2 \(\frac{{\overrightarrow E \times \overrightarrow B }}{{{\mu _0}}}\)
3 \(\frac{{\overrightarrow B \times \overrightarrow E }}{{{\mu _0}}}\)
4 \(E\)
PHXI15:WAVES

358887 In an apparatus, the electric field was found to oscillate with amplitude of \(18\;V/m\). The amplitude of the oscillating magnetic field will be

1 \(11 \times {10^{ - 11}}\;T\)
2 \(6 \times {10^{ - 8}}\;T\)
3 \(4 \times {10^{ - 6}}\;T\)
4 \(9 \times {10^{ - 9}}\;T\)
PHXI15:WAVES

358888 The electric field in an electromagnetic wave is given by \(\vec{E}=\hat{i} 40 \cos \omega\left(t-\dfrac{z}{c}\right) N C^{-1}\). The magnetic field induction of this wave is (in \(S I\) unit)

1 \(\vec{B}=\hat{k} \dfrac{40}{c} \cos \omega\left(t-\dfrac{z}{c}\right)\)
2 \(\vec{B}=\hat{i} \dfrac{40}{c} \cos \omega\left(t-\dfrac{z}{c}\right)\)
3 \(\vec{B}=\hat{j} 40 \cos \omega\left(t-\dfrac{z}{c}\right)\)
4 \(\vec{B}=\hat{j} \dfrac{40}{c} \cos \omega\left(t-\dfrac{z}{c}\right)\)
PHXI15:WAVES

358889 The amplitude of magnetic field in an electromagnetic wave propagating along \(y\)-axis is \(6.0 \times {10^{ - 7}}\;T\). The maximum value of electric field in the electromagnetic wave is

1 \(2 \times {10^{15}}V{m^{ - 1}}\)
2 \(6.0 \times {10^{ - 7}}\;V\;{m^{ - 1}}\)
3 \(5 \times {10^{14}}V{m^{ - 1}}\)
4 \(180\,V{m^{ - 1}}\)
PHXI15:WAVES

358890 In a plane electromagnetic wave travelling in free space, the elctric field component oscillates sinusoidally at a frequency of \(2.0 \times {10^{10}}\;Hz\) and amplitude \(48V{m^{ - 1}}\). Then the amplitude of oscillating magnetic field is: (Speed of light in free space \( = 3 \times {10^8}\;m{s^{ - 1}})\)

1 \(1.6 \times {10^8}\;T\)
2 \(1.6 \times {10^{ - 7}}\;T\)
3 \(1.6 \times {10^{ - 6}}\;T\)
4 \(1.6 \times {10^{ - 9}}\;T\)
PHXI15:WAVES

358886 The velocity of electromagnetic wave is along the direction of:

1 \(\vec{B}\)
2 \(\frac{{\overrightarrow E \times \overrightarrow B }}{{{\mu _0}}}\)
3 \(\frac{{\overrightarrow B \times \overrightarrow E }}{{{\mu _0}}}\)
4 \(E\)
PHXI15:WAVES

358887 In an apparatus, the electric field was found to oscillate with amplitude of \(18\;V/m\). The amplitude of the oscillating magnetic field will be

1 \(11 \times {10^{ - 11}}\;T\)
2 \(6 \times {10^{ - 8}}\;T\)
3 \(4 \times {10^{ - 6}}\;T\)
4 \(9 \times {10^{ - 9}}\;T\)
PHXI15:WAVES

358888 The electric field in an electromagnetic wave is given by \(\vec{E}=\hat{i} 40 \cos \omega\left(t-\dfrac{z}{c}\right) N C^{-1}\). The magnetic field induction of this wave is (in \(S I\) unit)

1 \(\vec{B}=\hat{k} \dfrac{40}{c} \cos \omega\left(t-\dfrac{z}{c}\right)\)
2 \(\vec{B}=\hat{i} \dfrac{40}{c} \cos \omega\left(t-\dfrac{z}{c}\right)\)
3 \(\vec{B}=\hat{j} 40 \cos \omega\left(t-\dfrac{z}{c}\right)\)
4 \(\vec{B}=\hat{j} \dfrac{40}{c} \cos \omega\left(t-\dfrac{z}{c}\right)\)
PHXI15:WAVES

358889 The amplitude of magnetic field in an electromagnetic wave propagating along \(y\)-axis is \(6.0 \times {10^{ - 7}}\;T\). The maximum value of electric field in the electromagnetic wave is

1 \(2 \times {10^{15}}V{m^{ - 1}}\)
2 \(6.0 \times {10^{ - 7}}\;V\;{m^{ - 1}}\)
3 \(5 \times {10^{14}}V{m^{ - 1}}\)
4 \(180\,V{m^{ - 1}}\)
PHXI15:WAVES

358890 In a plane electromagnetic wave travelling in free space, the elctric field component oscillates sinusoidally at a frequency of \(2.0 \times {10^{10}}\;Hz\) and amplitude \(48V{m^{ - 1}}\). Then the amplitude of oscillating magnetic field is: (Speed of light in free space \( = 3 \times {10^8}\;m{s^{ - 1}})\)

1 \(1.6 \times {10^8}\;T\)
2 \(1.6 \times {10^{ - 7}}\;T\)
3 \(1.6 \times {10^{ - 6}}\;T\)
4 \(1.6 \times {10^{ - 9}}\;T\)