355547 Two forces 3N and 2N are at an angle θ such that the resultant is R. The first force is now increased to 6N and the resultant becomes 2R. The value of θ is
A=3N,B=2Nthen R=A2+B2+2ABcosθR=9+4+12cosθ(1)Now A=6N,B=2N then2R=36+4+24cosθ(2)From (1) and (2) we get cosθ=−12∴θ=120∘
355548 If unit vectors A^ and B^ are inclined at an angle θ, then |A^−B^| is
|A^−B^|2=(A^−B^)⋅(A^−B^)=A^⋅A^−A^⋅B^−B^⋅A^+B^⋅B^=1−A^⋅B^−A^⋅B^+1=2−2cosθ=2(1−cosθ)=2(2sin2θ2)=4sin2θ2
355549 If A→=3i^+4j^ and B→=ai^+3j^ are perpendicular to each other. The value of a is
For vectors to be perpendicular,A→⋅B→=0⇒a=−4
355550 The component of vector A→=2i^+3j^ along the vector B→=i^+j^ is
A→⋅B→|B|=(2i^+3j^)⋅(i^+j^)2=2+32=52